000875205 001__ 875205
000875205 005__ 20240712084507.0
000875205 0247_ $$2doi$$a10.1002/pssr.202000103
000875205 0247_ $$2ISSN$$a1862-6254
000875205 0247_ $$2ISSN$$a1862-6270
000875205 0247_ $$2Handle$$a2128/25195
000875205 0247_ $$2WOS$$aWOS:000528615100001
000875205 037__ $$aFZJ-2020-01873
000875205 082__ $$a530
000875205 1001_ $$0P:(DE-Juel1)176774$$aYao, Zhirong$$b0
000875205 245__ $$aHigh‐Performance and Stable Dopant‐Free Silicon Solar Cells with Magnesium Acetylacetonate Electron‐Selective Contacts
000875205 260__ $$aWeinheim$$bWiley-VCH$$c2020
000875205 3367_ $$2DRIVER$$aarticle
000875205 3367_ $$2DataCite$$aOutput Types/Journal article
000875205 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1593515855_1668
000875205 3367_ $$2BibTeX$$aARTICLE
000875205 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875205 3367_ $$00$$2EndNote$$aJournal Article
000875205 520__ $$aOne of the challenges in fabricating high‐performance n‐type crystalline silicon (n‐type c‐Si) solar cells is the high‐quality n‐type c‐Si/metal contact. Schottky barriers are commonly found on the n‐type c‐Si/metal contact, which suppresses electron transportation. Herein, novel stacks of magnesium acetylacetonate (Mg(Acac)2)/magnesium (Mg)/silver (Ag) to form electron‐selective contacts for n‐type c‐Si solar cells are presented, which enables a dopant‐free process. An ohmic contact on n‐type c‐Si is formed using the Mg(Acac)2/Mg/Ag stacks. The transmission spectrum and ultraviolet photoelectron spectroscopy measurements show negligible conduction‐band offset and large valence‐band offset between Mg(Acac)2 and n‐type c‐Si, which indicates the electron‐transporting and hole‐blocking properties of Mg(Acac)2/n‐type c‐Si heterocontacts. Moreover, the contact resistivities (ρ c ) between the Mg(Acac)2/Mg/Ag electron‐selective heterocontacts and n‐type c‐Si substrates are lower than 10 mΩ cm2, which demonstrates the good electrode properties of the Mg(Acac)2/Mg/Ag stacks. The Mg(Acac)2/Mg/Ag electron‐selective stacks are applied on n‐type c‐Si solar cells with partial rear contact, and >20% efficiency is achieved, which is higher than that in a reference cell with only Ag contact. The stability of the n‐type c‐Si solar cell performance equipped with Mg(Acac)2/Mg/Ag contacts is verified under ambient conditions. This novel low‐temperature contact technique offers a reliable alternative for high‐performance n‐type c‐Si solar cells.
000875205 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000875205 588__ $$aDataset connected to CrossRef
000875205 7001_ $$0P:(DE-HGF)0$$aCai, Lun$$b1
000875205 7001_ $$0P:(DE-HGF)0$$aMeng, Lanxiang$$b2
000875205 7001_ $$0P:(DE-Juel1)178049$$aQiu, Kaifu$$b3
000875205 7001_ $$0P:(DE-HGF)0$$aLin, Wenjie$$b4
000875205 7001_ $$0P:(DE-HGF)0$$aJin, Jingsheng$$b5
000875205 7001_ $$0P:(DE-Juel1)169946$$aDuan, Weiyuan$$b6
000875205 7001_ $$0P:(DE-Juel1)130233$$aDing, Kaining$$b7
000875205 7001_ $$0P:(DE-Juel1)174415$$aLi, Shenghao$$b8
000875205 7001_ $$0P:(DE-HGF)0$$aAi, Bin$$b9
000875205 7001_ $$0P:(DE-HGF)0$$aLiang, Zongcun$$b10
000875205 7001_ $$0P:(DE-HGF)0$$aShen, Hui$$b11$$eCorresponding author
000875205 773__ $$0PERI:(DE-600)2259465-6$$a10.1002/pssr.202000103$$gp. 2000103 -$$n6$$p2000103$$tPhysica status solidi / Rapid research letters Rapid research letters$$v14$$x1862-6270$$y2020
000875205 8564_ $$uhttps://juser.fz-juelich.de/record/875205/files/pssr.202000103.pdf$$yOpenAccess
000875205 8564_ $$uhttps://juser.fz-juelich.de/record/875205/files/pssr.202000103.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875205 8767_ $$92020-04-15$$d2020-05-04$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$ppssr.202000103
000875205 909CO $$ooai:juser.fz-juelich.de:875205$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000875205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176774$$aForschungszentrum Jülich$$b0$$kFZJ
000875205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178049$$aForschungszentrum Jülich$$b3$$kFZJ
000875205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169946$$aForschungszentrum Jülich$$b6$$kFZJ
000875205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130233$$aForschungszentrum Jülich$$b7$$kFZJ
000875205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174415$$aForschungszentrum Jülich$$b8$$kFZJ
000875205 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000875205 9141_ $$y2020
000875205 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875205 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000875205 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000875205 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS STATUS SOLIDI-R : 2017
000875205 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875205 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000875205 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875205 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000875205 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875205 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000875205 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000875205 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875205 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875205 920__ $$lyes
000875205 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000875205 9801_ $$aAPC
000875205 9801_ $$aFullTexts
000875205 980__ $$ajournal
000875205 980__ $$aVDB
000875205 980__ $$aUNRESTRICTED
000875205 980__ $$aI:(DE-Juel1)IEK-5-20101013
000875205 980__ $$aAPC
000875205 981__ $$aI:(DE-Juel1)IMD-3-20101013