| Home > Workflow collections > Publication Charges > Efficient Communication in Distributed Simulations of Spiking Neuronal Networks With Gap Junctions > print |
| 001 | 875222 | ||
| 005 | 20240313103119.0 | ||
| 024 | 7 | _ | |a 10.3389/fninf.2020.00012 |2 doi |
| 024 | 7 | _ | |a 2128/24781 |2 Handle |
| 024 | 7 | _ | |a altmetric:81375141 |2 altmetric |
| 024 | 7 | _ | |a pmid:32431602 |2 pmid |
| 024 | 7 | _ | |a WOS:000536333100001 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-01876 |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Jordan, Jakob |0 P:(DE-Juel1)178920 |b 0 |e Corresponding author |u fzj |
| 245 | _ | _ | |a Efficient Communication in Distributed Simulations of Spiking Neuronal Networks With Gap Junctions |
| 260 | _ | _ | |a Lausanne |c 2020 |b Frontiers Research Foundation |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1588669042_22660 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Investigating the dynamics and function of large-scale spiking neuronal networks with realistic numbers of synapses is made possible today by state-of-the-art simulation code that scales to the largest contemporary supercomputers. However, simulations that involve electrical interactions, also called gap junctions, besides chemical synapses scale only poorly due to a communication scheme that collects global data on each compute node. In comparison to chemical synapses, gap junctions are far less abundant. To improve scalability we exploit this sparsity by integrating an existing framework for continuous interactions with a recently proposed directed communication scheme for spikes. Using a reference implementation in the NEST simulator we demonstrate excellent scalability of the integrated framework, accelerating large-scale simulations with gap junctions by more than an order of magnitude. This allows, for the first time, the efficient exploration of the interactions of chemical and electrical coupling in large-scale neuronal networks models with natural synapse density distributed across thousands of compute nodes. |
| 536 | _ | _ | |a 574 - Theory, modelling and simulation (POF3-574) |0 G:(DE-HGF)POF3-574 |c POF3-574 |x 0 |f POF III |
| 536 | _ | _ | |a MSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018) |0 G:(DE-Juel1)HGF-SMHB-2014-2018 |c HGF-SMHB-2014-2018 |x 1 |f MSNN |
| 536 | _ | _ | |a HBP - The Human Brain Project (604102) |0 G:(EU-Grant)604102 |c 604102 |x 2 |f FP7-ICT-2013-FET-F |
| 536 | _ | _ | |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270) |0 G:(EU-Grant)720270 |c 720270 |x 3 |f H2020-Adhoc-2014-20 |
| 536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |x 4 |f H2020-SGA-FETFLAG-HBP-2017 |
| 536 | _ | _ | |a DEEP-EST - DEEP - Extreme Scale Technologies (754304) |0 G:(EU-Grant)754304 |c 754304 |x 5 |f H2020-FETHPC-2016 |
| 536 | _ | _ | |a Advanced Computing Architectures (aca_20190115) |0 G:(DE-Juel1)aca_20190115 |c aca_20190115 |x 6 |f Advanced Computing Architectures |
| 536 | _ | _ | |a Brain-Scale Simulations (jinb33_20121101) |0 G:(DE-Juel1)jinb33_20121101 |c jinb33_20121101 |x 7 |f Brain-Scale Simulations |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Helias, Moritz |0 P:(DE-Juel1)144806 |b 1 |u fzj |
| 700 | 1 | _ | |a Diesmann, Markus |0 P:(DE-Juel1)144174 |b 2 |
| 700 | 1 | _ | |a Kunkel, Susanne |0 P:(DE-Juel1)151364 |b 3 |
| 773 | _ | _ | |a 10.3389/fninf.2020.00012 |g Vol. 14, p. 12 |0 PERI:(DE-600)2452979-5 |p 12 |t Frontiers in neuroinformatics |v 14 |y 2020 |x 1662-5196 |
| 856 | 4 | _ | |u https://www.frontiersin.org/articles/10.3389/fninf.2020.00012/full |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/875222/files/2020-0237910-3%281%29.pdf |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/875222/files/2020-0237910-3%281%29.pdf?subformat=pdfa |x pdfa |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/875222/files/fninf-14-00012.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/875222/files/fninf-14-00012.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:875222 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)178920 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)144806 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)144174 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |2 G:(DE-HGF)POF3-500 |v Theory, modelling and simulation |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b FRONT NEUROINFORM : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Theoretical Neuroscience |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 2 |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
| 980 | _ | _ | |a APC |
| 981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|