001     875222
005     20240313103119.0
024 7 _ |a 10.3389/fninf.2020.00012
|2 doi
024 7 _ |a 2128/24781
|2 Handle
024 7 _ |a altmetric:81375141
|2 altmetric
024 7 _ |a pmid:32431602
|2 pmid
024 7 _ |a WOS:000536333100001
|2 WOS
037 _ _ |a FZJ-2020-01876
082 _ _ |a 610
100 1 _ |a Jordan, Jakob
|0 P:(DE-Juel1)178920
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Efficient Communication in Distributed Simulations of Spiking Neuronal Networks With Gap Junctions
260 _ _ |a Lausanne
|c 2020
|b Frontiers Research Foundation
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1588669042_22660
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Investigating the dynamics and function of large-scale spiking neuronal networks with realistic numbers of synapses is made possible today by state-of-the-art simulation code that scales to the largest contemporary supercomputers. However, simulations that involve electrical interactions, also called gap junctions, besides chemical synapses scale only poorly due to a communication scheme that collects global data on each compute node. In comparison to chemical synapses, gap junctions are far less abundant. To improve scalability we exploit this sparsity by integrating an existing framework for continuous interactions with a recently proposed directed communication scheme for spikes. Using a reference implementation in the NEST simulator we demonstrate excellent scalability of the integrated framework, accelerating large-scale simulations with gap junctions by more than an order of magnitude. This allows, for the first time, the efficient exploration of the interactions of chemical and electrical coupling in large-scale neuronal networks models with natural synapse density distributed across thousands of compute nodes.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|x 0
|f POF III
536 _ _ |a MSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018)
|0 G:(DE-Juel1)HGF-SMHB-2014-2018
|c HGF-SMHB-2014-2018
|x 1
|f MSNN
536 _ _ |a HBP - The Human Brain Project (604102)
|0 G:(EU-Grant)604102
|c 604102
|x 2
|f FP7-ICT-2013-FET-F
536 _ _ |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)
|0 G:(EU-Grant)720270
|c 720270
|x 3
|f H2020-Adhoc-2014-20
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|x 4
|f H2020-SGA-FETFLAG-HBP-2017
536 _ _ |a DEEP-EST - DEEP - Extreme Scale Technologies (754304)
|0 G:(EU-Grant)754304
|c 754304
|x 5
|f H2020-FETHPC-2016
536 _ _ |a Advanced Computing Architectures (aca_20190115)
|0 G:(DE-Juel1)aca_20190115
|c aca_20190115
|x 6
|f Advanced Computing Architectures
536 _ _ |a Brain-Scale Simulations (jinb33_20121101)
|0 G:(DE-Juel1)jinb33_20121101
|c jinb33_20121101
|x 7
|f Brain-Scale Simulations
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Helias, Moritz
|0 P:(DE-Juel1)144806
|b 1
|u fzj
700 1 _ |a Diesmann, Markus
|0 P:(DE-Juel1)144174
|b 2
700 1 _ |a Kunkel, Susanne
|0 P:(DE-Juel1)151364
|b 3
773 _ _ |a 10.3389/fninf.2020.00012
|g Vol. 14, p. 12
|0 PERI:(DE-600)2452979-5
|p 12
|t Frontiers in neuroinformatics
|v 14
|y 2020
|x 1662-5196
856 4 _ |u https://www.frontiersin.org/articles/10.3389/fninf.2020.00012/full
856 4 _ |u https://juser.fz-juelich.de/record/875222/files/2020-0237910-3%281%29.pdf
856 4 _ |u https://juser.fz-juelich.de/record/875222/files/2020-0237910-3%281%29.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/875222/files/fninf-14-00012.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/875222/files/fninf-14-00012.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:875222
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178920
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)144806
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144174
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT NEUROINFORM : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21