000875286 001__ 875286
000875286 005__ 20210130004910.0
000875286 0247_ $$2doi$$a10.1364/OE.393728
000875286 0247_ $$2Handle$$a2128/24822
000875286 0247_ $$2altmetric$$aaltmetric:81633537
000875286 0247_ $$2pmid$$apmid:32403583
000875286 0247_ $$2WOS$$aWOS:000538870000123
000875286 037__ $$aFZJ-2020-01920
000875286 041__ $$aEnglish
000875286 082__ $$a530
000875286 1001_ $$0P:(DE-HGF)0$$aStockhausen, Anne$$b0$$eCorresponding author
000875286 245__ $$aHard-wired lattice light-sheet microscopy for imaging of expanded samples
000875286 260__ $$aWashington, DC$$bSoc.$$c2020
000875286 3367_ $$2DRIVER$$aarticle
000875286 3367_ $$2DataCite$$aOutput Types/Journal article
000875286 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1588936623_11298
000875286 3367_ $$2BibTeX$$aARTICLE
000875286 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875286 3367_ $$00$$2EndNote$$aJournal Article
000875286 520__ $$aLight-sheet fluorescence microscopy (LSFM) helps investigate small structures in developing cells and tissue for three-dimensional localization microscopy and large-field brain imaging in neuroscience. Lattice light-sheet microscopy is a recent development with great potential to improve axial resolution and usable field sizes, thus improving imaging speed. In contrast to the commonly employed Gaussian beams for light-sheet generation in conventional LSFM, in lattice light-sheet microscopy an array of low diverging Bessel beams with a suppressed side lobe structure is used. We developed a facile elementary lattice light-sheet microscope using a micro-fabricated fixed ring mask for lattice light-sheet generation. In our setup, optical hardware elements enable a stable and simple illumination path without the need for spatial light modulators. This setup, in combination with long-working distance objectives and the possibility for simultaneous dual-color imaging, provides optimal conditions for imaging extended optically cleared tissue samples. We here present experimental data of fluorescently stained neurons and neurites from mouse hippocampus following tissue expansion and demonstrate the high homogeneous resolution throughout the entire imaged volume. Utilizing our purpose-built lattice light-sheet microscope, we reached a homogeneous excitation and an axial resolution of 1.2 µm over a field of view of (333 µm)2.
000875286 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000875286 588__ $$aDataset connected to CrossRef
000875286 7001_ $$0P:(DE-HGF)0$$aBürgers, Jana$$b1
000875286 7001_ $$0P:(DE-HGF)0$$aRodriguez-Gatica, Juan Eduardo$$b2
000875286 7001_ $$0P:(DE-HGF)0$$aSchweihoff, Jens$$b3
000875286 7001_ $$0P:(DE-Juel1)128833$$aMerkel, Rudolf$$b4$$ufzj
000875286 7001_ $$0P:(DE-Juel1)132776$$aPrigge, Jens Markus$$b5$$ufzj
000875286 7001_ $$0P:(DE-HGF)0$$aSchwarz, Martin Karl$$b6
000875286 7001_ $$00000-0003-3750-5355$$aKubitscheck, Ulrich$$b7
000875286 773__ $$0PERI:(DE-600)1491859-6$$a10.1364/OE.393728$$gVol. 28, no. 10, p. 15587 -$$n10$$p15587 -$$tOptics express$$v28$$x1094-4087$$y2020
000875286 8564_ $$uhttps://juser.fz-juelich.de/record/875286/files/oe-28-10-15587.pdf$$yOpenAccess
000875286 8564_ $$uhttps://juser.fz-juelich.de/record/875286/files/oe-28-10-15587.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875286 909CO $$ooai:juser.fz-juelich.de:875286$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000875286 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128833$$aForschungszentrum Jülich$$b4$$kFZJ
000875286 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132776$$aForschungszentrum Jülich$$b5$$kFZJ
000875286 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000875286 9141_ $$y2020
000875286 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875286 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000875286 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bOPT EXPRESS : 2017
000875286 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000875286 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000875286 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000875286 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875286 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875286 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000875286 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875286 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000875286 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000875286 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000875286 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875286 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000875286 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875286 920__ $$lyes
000875286 9201_ $$0I:(DE-Juel1)IBI-2-20200312$$kIBI-2$$lMechanobiologie$$x0
000875286 980__ $$ajournal
000875286 980__ $$aVDB
000875286 980__ $$aUNRESTRICTED
000875286 980__ $$aI:(DE-Juel1)IBI-2-20200312
000875286 9801_ $$aFullTexts