000875301 001__ 875301
000875301 005__ 20240711092241.0
000875301 0247_ $$2doi$$a10.1007/s10853-020-04646-y
000875301 0247_ $$2ISSN$$a0022-2461
000875301 0247_ $$2ISSN$$a1573-4803
000875301 0247_ $$2Handle$$a2128/24840
000875301 0247_ $$2WOS$$aWOS:000526213900001
000875301 037__ $$aFZJ-2020-01932
000875301 082__ $$a670
000875301 1001_ $$0P:(DE-HGF)0$$aXia, Wenzhen$$b0$$eCorresponding author
000875301 245__ $$aInsight into indentation-induced plastic flow in austenitic stainless steel
000875301 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2020
000875301 3367_ $$2DRIVER$$aarticle
000875301 3367_ $$2DataCite$$aOutput Types/Journal article
000875301 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712819394_17705
000875301 3367_ $$2BibTeX$$aARTICLE
000875301 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875301 3367_ $$00$$2EndNote$$aJournal Article
000875301 520__ $$aThe indentation-induced plasticity and roughness have been investigated intensively by experiments and simulations during the last decades. However, the precise mechanisms of how dislocation flow leads to pile-up formation are still not completely understood, although this is one of the initial steps causing surface roughening in tribological contacts at low loads. In this work, {001}-, {101}- and {111}-grain orientations in an austenite stainless steel [(face-centered cubic (FCC) phase]) are indented with varying load forces. By using scanning electron-based methods and slip plane analysis, we reveal: (1) how slip-steps show the change of pile-up formation, (2) how the slip-plane inclination determines the dislocation flow and (3) how slip-plane interactions result in the final pile-up shape during indentation. We find that the flow direction transforms from the forward flow to the sideway at a transition angle of 55∘−58∘ between the slip-plane and the surface. We use large displacement finite element method simulations to validate an inversion of the resolved shear stress at this transition angle. We provide insights into the evolution of plasticity in dislocation-mediated FCC metal indentations, with the potential application of this information for indentation simulations and for understanding the initial stage of scratching during tribology in the future.
000875301 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000875301 536__ $$0G:(DE-HGF)POF4-1241$$a1241 - Gas turbines (POF4-124)$$cPOF4-124$$fPOF IV$$x1
000875301 588__ $$aDataset connected to CrossRef
000875301 7001_ $$0P:(DE-HGF)0$$aDehm, Gerhard$$b1
000875301 7001_ $$0P:(DE-Juel1)164854$$aBrinckmann, Steffen$$b2$$eCorresponding author
000875301 773__ $$0PERI:(DE-600)2015305-3$$a10.1007/s10853-020-04646-y$$gVol. 55, no. 21, p. 9095 - 9108$$n21$$p9095 - 9108$$tJournal of materials science$$v55$$x1573-4803$$y2020
000875301 8564_ $$uhttps://juser.fz-juelich.de/record/875301/files/Xia2020_Article_InsightIntoIndentation-induced.pdf$$yOpenAccess
000875301 8564_ $$uhttps://juser.fz-juelich.de/record/875301/files/Xia2020_Article_InsightIntoIndentation-induced.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875301 909CO $$ooai:juser.fz-juelich.de:875301$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000875301 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164854$$aForschungszentrum Jülich$$b2$$kFZJ
000875301 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000875301 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1241$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x1
000875301 9141_ $$y2020
000875301 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875301 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000875301 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000875301 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000875301 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER SCI : 2017
000875301 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875301 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000875301 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875301 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000875301 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875301 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000875301 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000875301 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875301 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000875301 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875301 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000875301 9801_ $$aFullTexts
000875301 980__ $$ajournal
000875301 980__ $$aVDB
000875301 980__ $$aI:(DE-Juel1)IEK-2-20101013
000875301 980__ $$aUNRESTRICTED
000875301 981__ $$aI:(DE-Juel1)IMD-1-20101013