Journal Article FZJ-2020-01932

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Insight into indentation-induced plastic flow in austenitic stainless steel

 ;  ;

2020
Springer Science + Business Media B.V Dordrecht [u.a.]

Journal of materials science 55(21), 9095 - 9108 () [10.1007/s10853-020-04646-y]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: The indentation-induced plasticity and roughness have been investigated intensively by experiments and simulations during the last decades. However, the precise mechanisms of how dislocation flow leads to pile-up formation are still not completely understood, although this is one of the initial steps causing surface roughening in tribological contacts at low loads. In this work, {001}-, {101}- and {111}-grain orientations in an austenite stainless steel [(face-centered cubic (FCC) phase]) are indented with varying load forces. By using scanning electron-based methods and slip plane analysis, we reveal: (1) how slip-steps show the change of pile-up formation, (2) how the slip-plane inclination determines the dislocation flow and (3) how slip-plane interactions result in the final pile-up shape during indentation. We find that the flow direction transforms from the forward flow to the sideway at a transition angle of 55∘−58∘ between the slip-plane and the surface. We use large displacement finite element method simulations to validate an inversion of the resolved shear stress at this transition angle. We provide insights into the evolution of plasticity in dislocation-mediated FCC metal indentations, with the potential application of this information for indentation simulations and for understanding the initial stage of scratching during tribology in the future.

Classification:

Contributing Institute(s):
  1. Werkstoffstruktur und -eigenschaften (IEK-2)
Research Program(s):
  1. 113 - Methods and Concepts for Material Development (POF3-113) (POF3-113)
  2. 1241 - Gas turbines (POF4-124) (POF4-124)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-1
Workflow collections > Public records
IEK > IEK-2
Publications database
Open Access

 Record created 2020-05-11, last modified 2024-07-11