000875305 001__ 875305
000875305 005__ 20240711092241.0
000875305 0247_ $$2doi$$a10.3390/catal10050541
000875305 0247_ $$2Handle$$a2128/24889
000875305 0247_ $$2WOS$$aWOS:000546007000080
000875305 037__ $$aFZJ-2020-01936
000875305 082__ $$a690
000875305 1001_ $$0P:(DE-HGF)0$$aButman, Mikhail F.$$b0
000875305 245__ $$aBiomorphic Fibrous TiO$_{2}$ Photocatalyst Obtained by Hydrothermal Impregnation of Short Flax Fibers with Titanium Polyhydroxocomplexes
000875305 260__ $$aBasel$$bMDPI$$c2020
000875305 3367_ $$2DRIVER$$aarticle
000875305 3367_ $$2DataCite$$aOutput Types/Journal article
000875305 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1589544901_9758
000875305 3367_ $$2BibTeX$$aARTICLE
000875305 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875305 3367_ $$00$$2EndNote$$aJournal Article
000875305 520__ $$aA biomimetic solution technology for producing a photocatalytic material in the form of biomorphic titanium oxide fibers with a hierarchical structure using short flax fiber as a biotemplate is proposed. The impregnation of flax fibers intensified under hydrothermal conditions with a precursor was performed in an autoclave to activate the nucleation of the photoactive TiO2 phases. The interaction between precursor and flax fibers was studied by using infrared spectroscopy (IR) and differential scanning calorimetry/thermogravimetry analysis (DSC/TG). The morphology, structure, and textural properties of the TiO2 fibers obtained at annealing temperatures of 500–700 °C were determined by X-ray diffraction analysis, scanning electron microscopy, and nitrogen adsorption/desorption. It is shown that the annealing temperature of the impregnated biotemplates significantly affects the phase composition, crystallite size, and porous structure of TiO2 fiber samples. The photocatalytic activity of the obtained fibrous TiO2 materials was evaluated by using the decomposition of the cationic dye Rhodamine B in an aqueous solution (concentration 12 mg/L) under the influence of ultraviolet radiation (UV). The maximum photodegradation efficiency of the Rhodamine B was observed for TiO2 fibers annealed at 600 °C and containing 40% anatase and 60% rutile. This sample ensured 100% degradation of the dye in 20 min, and this amount significantly exceeds the photocatalytic activity of the commercial Degussa P25 photocatalyst and TiO2 samples obtained previously under hydrothermal conditions by the sol-gel method.
000875305 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000875305 588__ $$aDataset connected to CrossRef
000875305 7001_ $$00000-0002-3558-3715$$aKochkina, Nataliya E.$$b1
000875305 7001_ $$00000-0003-1392-5996$$aOvchinnikov, Nikolay L.$$b2
000875305 7001_ $$0P:(DE-HGF)0$$aZinenko, Nikolay V.$$b3
000875305 7001_ $$0P:(DE-Juel1)159377$$aSergeev, Dmitry N.$$b4$$eCorresponding author
000875305 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b5$$ufzj
000875305 773__ $$0PERI:(DE-600)2521238-2$$a10.3390/catal10050541$$gVol. 10, no. 5, p. 541 -$$n5$$p541 -$$tWater$$v10$$x2073-4441$$y2020
000875305 8564_ $$uhttps://juser.fz-juelich.de/record/875305/files/Invoice_catalysts-798561.pdf
000875305 8564_ $$uhttps://juser.fz-juelich.de/record/875305/files/Invoice_catalysts-798561.pdf?subformat=pdfa$$xpdfa
000875305 8564_ $$uhttps://juser.fz-juelich.de/record/875305/files/catalysts-10-00541-v2.pdf$$yOpenAccess
000875305 8564_ $$uhttps://juser.fz-juelich.de/record/875305/files/catalysts-10-00541-v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875305 8767_ $$8catalysts-798561$$92020-05-11$$d2020-05-11$$eAPC$$jZahlung erfolgt$$pcatalysts-798561$$zBelegnr. 1200152691
000875305 909CO $$ooai:juser.fz-juelich.de:875305$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000875305 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159377$$aForschungszentrum Jülich$$b4$$kFZJ
000875305 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b5$$kFZJ
000875305 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000875305 9141_ $$y2020
000875305 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875305 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000875305 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bWATER-SUI : 2017
000875305 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000875305 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000875305 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875305 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875305 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000875305 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875305 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000875305 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000875305 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875305 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875305 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000875305 9801_ $$aAPC
000875305 9801_ $$aFullTexts
000875305 980__ $$ajournal
000875305 980__ $$aVDB
000875305 980__ $$aUNRESTRICTED
000875305 980__ $$aI:(DE-Juel1)IEK-2-20101013
000875305 980__ $$aAPC
000875305 981__ $$aI:(DE-Juel1)IMD-1-20101013