000875336 001__ 875336
000875336 005__ 20240712112831.0
000875336 0247_ $$2doi$$a10.1002/cssc.202000520
000875336 0247_ $$2ISSN$$a1864-5631
000875336 0247_ $$2ISSN$$a1864-564X
000875336 0247_ $$2Handle$$a2128/25900
000875336 0247_ $$2altmetric$$aaltmetric:81481691
000875336 0247_ $$2pmid$$apmid:32216123
000875336 0247_ $$2WOS$$aWOS:000530075600001
000875336 037__ $$aFZJ-2020-01959
000875336 041__ $$aEnglish
000875336 082__ $$a540
000875336 1001_ $$0P:(DE-Juel1)171715$$aKretzschmar, Ansgar$$b0$$eCorresponding author
000875336 245__ $$aTailored Gas Adsorption Properties of Electrospun Carbon Nanofibers for Gas Separation and Storage
000875336 260__ $$aWeinheim$$bWiley-VCH$$c2020
000875336 3367_ $$2DRIVER$$aarticle
000875336 3367_ $$2DataCite$$aOutput Types/Journal article
000875336 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602839473_16786
000875336 3367_ $$2BibTeX$$aARTICLE
000875336 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875336 3367_ $$00$$2EndNote$$aJournal Article
000875336 520__ $$aCarbon nanofibers (CNFs) derived from electrospun polyacrylonitrile (PAN) were investigated with respect to their gas adsorption properties. By employing CO2 adsorption measurements, it is shown that the adsorption capacity and selectivity of the fibers can be tailored by means of the applied carbonization temperature. General pore properties of the CNFs were identified by Ar adsorption measurements, whereas CO2 adsorption measurements provided information about the ultramicroporosity, adsorption energies, and adsorption capacities. Ideal adsorbed solution theory (IAST) selectivities under practically relevant conditions were determined by evaluation of single‐component data for N2 and CO2. Especially for low carbonization temperatures, the CNFs exhibit very good low‐pressure adsorption performance and excellent CO2/N2 IAST selectivities of 350 at 20 mbar and 132 at 1 bar, which are attributed to a molecular‐sieve effect in very narrow slit pores. These IAST selectivities are some of the highest values for carbon materials reported in the literature so far and the highest IAST selectivities for as‐prepared, non‐post‐treated carbon ever.
000875336 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000875336 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000875336 588__ $$aDataset connected to CrossRef
000875336 7001_ $$0P:(DE-Juel1)178824$$aSelmert, Victor$$b1
000875336 7001_ $$0P:(DE-Juel1)164223$$aWeinrich, Henning$$b2
000875336 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b3
000875336 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b4
000875336 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger‐A.$$b5
000875336 773__ $$0PERI:(DE-600)2411405-4$$a10.1002/cssc.202000520$$gp. cssc.202000520$$n12$$p3180-3191$$tChemSusChem$$v13$$x1864-564X$$y2020
000875336 8564_ $$uhttps://juser.fz-juelich.de/record/875336/files/Manuscript%20ohne%20Wasserzeichen.pdf$$yOpenAccess
000875336 8564_ $$uhttps://juser.fz-juelich.de/record/875336/files/cssc.202000520.pdf$$yOpenAccess
000875336 8564_ $$uhttps://juser.fz-juelich.de/record/875336/files/Manuscript%20ohne%20Wasserzeichen.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875336 8564_ $$uhttps://juser.fz-juelich.de/record/875336/files/cssc.202000520.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875336 8767_ $$92020-03-25$$d2020-05-05$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$pcssc.202000520
000875336 909CO $$ooai:juser.fz-juelich.de:875336$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000875336 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171715$$aForschungszentrum Jülich$$b0$$kFZJ
000875336 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)171715$$aRWTH Aachen$$b0$$kRWTH
000875336 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178824$$aForschungszentrum Jülich$$b1$$kFZJ
000875336 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)178824$$aRWTH Aachen$$b1$$kRWTH
000875336 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164223$$aForschungszentrum Jülich$$b2$$kFZJ
000875336 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b3$$kFZJ
000875336 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b4$$kFZJ
000875336 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b5$$kFZJ
000875336 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b5$$kRWTH
000875336 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000875336 9141_ $$y2020
000875336 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875336 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000875336 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMSUSCHEM : 2017
000875336 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEMSUSCHEM : 2017
000875336 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875336 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000875336 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875336 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875336 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000875336 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875336 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875336 920__ $$lyes
000875336 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000875336 9801_ $$aAPC
000875336 9801_ $$aFullTexts
000875336 980__ $$ajournal
000875336 980__ $$aVDB
000875336 980__ $$aUNRESTRICTED
000875336 980__ $$aI:(DE-Juel1)IEK-9-20110218
000875336 980__ $$aAPC
000875336 981__ $$aI:(DE-Juel1)IET-1-20110218