000875365 001__ 875365
000875365 005__ 20241127124644.0
000875365 0247_ $$2doi$$a10.1016/j.apenergy.2020.115882
000875365 0247_ $$2Handle$$a2128/26172
000875365 0247_ $$2altmetric$$aaltmetric:91453651
000875365 0247_ $$2WOS$$aWOS:000594115100005
000875365 037__ $$aFZJ-2020-01983
000875365 082__ $$a620
000875365 1001_ $$0P:(DE-Juel1)207065$$aSamsun, Remzi Can$$b0$$eCorresponding author$$ufzj
000875365 245__ $$aReforming of Diesel and Jet Fuel for Fuel Celles on a Systems Level: Steady-State and Transient Operation
000875365 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000875365 3367_ $$2DRIVER$$aarticle
000875365 3367_ $$2DataCite$$aOutput Types/Journal article
000875365 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605793697_21447
000875365 3367_ $$2BibTeX$$aARTICLE
000875365 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875365 3367_ $$00$$2EndNote$$aJournal Article
000875365 520__ $$aThe operation of fuel cell systems using liquid fuels widens the application possibilities of this promising energy conversion technology. However, systems utilizing diesel and jet fuel reforming are fairly complex and suffer from poor stability and limited dynamics. To address these challenges, this paper investigates the steady-state and transient operation of a 28 kWth fuel processor on the systems level. With the help of experiments that make use of the developed prototype, suitable operating parameters are sought to maximize the simultaneous fuel conversion in the reformer and CO conversion in the shift reactor. Furthermore, a load change strategy is developed with the aim of keeping the CO concentration at the fuel cell anode inlet below the target concentration of 1% of the wet product gas at all times. The identified parameters enable very high conversions (>99.95%) and CO concentrations even lower than the target during steady-state operation using three commercial fuels under full load. The developed load change strategy was validated during 90 min tests, including 16 load change cycles with loads between 40% and 100%. As well as providing excess steam during load change, the selection and control of optimal O2/C and H2O/C ratios and temperature levels proved to be of key importance. In order to minimize the CO concentration, it is recommended to operate the reformer at the identified parameters for each fuel and keep the shift outlet temperature between 295 and 300 °C by adjusting the water feed. The proposed fuel processor concept and the experimentally-validated operating strategies in this work can enable the successful implementation of fuel cell technology in different application areas, including auxiliary power units, remote power systems and range extenders.
000875365 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000875365 588__ $$aDataset connected to CrossRef
000875365 7001_ $$0P:(DE-Juel1)129906$$aPrawitz, Matthias$$b1$$ufzj
000875365 7001_ $$0P:(DE-Juel1)129935$$aTschauder, Andreas$$b2$$ufzj
000875365 7001_ $$0P:(DE-Juel1)129886$$aMeissner, Jan$$b3$$ufzj
000875365 7001_ $$0P:(DE-Juel1)129898$$aPasel, Joachim$$b4$$ufzj
000875365 7001_ $$0P:(DE-Juel1)129902$$aPeters, Ralf$$b5$$ufzj
000875365 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2020.115882$$p115882$$tApplied energy$$v279$$x0306-2619$$y2020
000875365 8564_ $$uhttps://juser.fz-juelich.de/record/875365/files/OAD0000069942.pdf
000875365 8564_ $$uhttps://juser.fz-juelich.de/record/875365/files/1-s2.0-S0306261920313532-main.pdf$$yOpenAccess
000875365 8767_ $$8OAD0000069942$$92020-09-21$$d2020-11-20$$eHybrid-OA$$jZahlung erfolgt$$pS0306261920313532$$zBelegnr. 1200159993
000875365 909CO $$ooai:juser.fz-juelich.de:875365$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000875365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207065$$aForschungszentrum Jülich$$b0$$kFZJ
000875365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129906$$aForschungszentrum Jülich$$b1$$kFZJ
000875365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129935$$aForschungszentrum Jülich$$b2$$kFZJ
000875365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129886$$aForschungszentrum Jülich$$b3$$kFZJ
000875365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129898$$aForschungszentrum Jülich$$b4$$kFZJ
000875365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129902$$aForschungszentrum Jülich$$b5$$kFZJ
000875365 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000875365 9141_ $$y2020
000875365 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875365 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000875365 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000875365 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000875365 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2017
000875365 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875365 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000875365 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875365 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875365 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000875365 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2017
000875365 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000875365 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875365 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875365 920__ $$lyes
000875365 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000875365 9801_ $$aAPC
000875365 9801_ $$aFullTexts
000875365 980__ $$ajournal
000875365 980__ $$aVDB
000875365 980__ $$aI:(DE-Juel1)IEK-14-20191129
000875365 980__ $$aAPC
000875365 980__ $$aUNRESTRICTED
000875365 981__ $$aI:(DE-Juel1)IET-4-20191129