000875392 001__ 875392 000875392 005__ 20240712112825.0 000875392 0247_ $$2doi$$a10.1021/acsaem.0c00543 000875392 0247_ $$2Handle$$a2128/25314 000875392 0247_ $$2altmetric$$aaltmetric:82256065 000875392 0247_ $$2WOS$$aWOS:000543715100002 000875392 037__ $$aFZJ-2020-02001 000875392 082__ $$a540 000875392 1001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b0$$eCorresponding author 000875392 245__ $$aOperando Transmission Electron Microscopy Study of All-Solid-State Battery Interface: Redistribution of Lithium among Interconnected Particles 000875392 260__ $$aWashington, DC$$bACS Publications$$c2020 000875392 3367_ $$2DRIVER$$aarticle 000875392 3367_ $$2DataCite$$aOutput Types/Journal article 000875392 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1598526156_7630 000875392 3367_ $$2BibTeX$$aARTICLE 000875392 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000875392 3367_ $$00$$2EndNote$$aJournal Article 000875392 500__ $$aGrant: BMBF projects−CatSE (Project 13XP0223A) and LiSi (Project 13XP0224B) 000875392 520__ $$aWith operando transmission electron microscopy visualizing solid-solid electrode-electrolyte interface of silicon active particles and lithium oxide solid electrolyte as a model system, we show that (de)lithiation (battery cycling) does not require all particles to be in direct contact with electrolytes across length scales of few hundreds of nanometer. A facile lithium redistribution that occurs between interconnected active particles indicates that lithium does not necessarily become isolated in individual particles due to loss of a direct contact. Our results have implications for the design of all-solid-state battery electrodes with improved capacity retention and cyclability. 000875392 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000875392 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1 000875392 536__ $$0G:(GEPRIS)167917811$$aDFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)$$c167917811$$x2 000875392 588__ $$aDataset connected to CrossRef 000875392 7001_ $$0P:(DE-Juel1)159136$$aMigunov, Vadim$$b1 000875392 7001_ $$0P:(DE-Juel1)157886$$aTavabi, Amir Hossein$$b2 000875392 7001_ $$0P:(DE-HGF)0$$aGeorge, Chandramohan$$b3 000875392 7001_ $$0P:(DE-HGF)0$$aLee, Qing$$b4 000875392 7001_ $$0P:(DE-HGF)0$$aRosi, Paolo$$b5 000875392 7001_ $$0P:(DE-HGF)0$$aArszelewska, Violetta$$b6 000875392 7001_ $$0P:(DE-HGF)0$$aGanapathy, Swapna$$b7 000875392 7001_ $$0P:(DE-HGF)0$$aVijay, Ashwin$$b8 000875392 7001_ $$0P:(DE-HGF)0$$aOoms, Frans G. B.$$b9 000875392 7001_ $$0P:(DE-Juel1)161348$$aSchierholz, Roland$$b10 000875392 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b11 000875392 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b12 000875392 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b13 000875392 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b14 000875392 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b15 000875392 7001_ $$0P:(DE-HGF)0$$aWagemaker, Marnix$$b16 000875392 7001_ $$0P:(DE-HGF)0$$aKelder, Erik M.$$b17 000875392 773__ $$0PERI:(DE-600)2916551-9$$a10.1021/acsaem.0c00543$$gp. acsaem.0c00543$$n6$$p5101–5106$$tACS applied energy materials$$v3$$x2574-0962$$y2020 000875392 8564_ $$uhttps://juser.fz-juelich.de/record/875392/files/acsaem.0c00543.pdf$$yOpenAccess 000875392 8564_ $$uhttps://juser.fz-juelich.de/record/875392/files/acsaem.0c00543.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000875392 8767_ $$810000152297$$92020-05-15$$d2020-05-15$$eHybrid-OA$$jZahlung erfolgt$$lKK: Barbers$$zUSD 4000 000875392 909CO $$ooai:juser.fz-juelich.de:875392$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire 000875392 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b0$$kFZJ 000875392 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159136$$aForschungszentrum Jülich$$b1$$kFZJ 000875392 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157886$$aForschungszentrum Jülich$$b2$$kFZJ 000875392 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161348$$aForschungszentrum Jülich$$b10$$kFZJ 000875392 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b11$$kFZJ 000875392 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b12$$kFZJ 000875392 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b13$$kFZJ 000875392 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b14$$kFZJ 000875392 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b15$$kFZJ 000875392 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b15$$kRWTH 000875392 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000875392 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1 000875392 9141_ $$y2020 000875392 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000875392 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000875392 920__ $$lyes 000875392 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0 000875392 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x1 000875392 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x2 000875392 9801_ $$aAPC 000875392 9801_ $$aFullTexts 000875392 980__ $$ajournal 000875392 980__ $$aVDB 000875392 980__ $$aI:(DE-Juel1)IEK-9-20110218 000875392 980__ $$aI:(DE-Juel1)ER-C-1-20170209 000875392 980__ $$aI:(DE-Juel1)ER-C-2-20170209 000875392 980__ $$aAPC 000875392 980__ $$aUNRESTRICTED 000875392 981__ $$aI:(DE-Juel1)IET-1-20110218