001     875392
005     20240712112825.0
024 7 _ |a 10.1021/acsaem.0c00543
|2 doi
024 7 _ |a 2128/25314
|2 Handle
024 7 _ |a altmetric:82256065
|2 altmetric
024 7 _ |a WOS:000543715100002
|2 WOS
037 _ _ |a FZJ-2020-02001
082 _ _ |a 540
100 1 _ |a Basak, Shibabrata
|0 P:(DE-Juel1)180432
|b 0
|e Corresponding author
245 _ _ |a Operando Transmission Electron Microscopy Study of All-Solid-State Battery Interface: Redistribution of Lithium among Interconnected Particles
260 _ _ |a Washington, DC
|c 2020
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1598526156_7630
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Grant: BMBF projects−CatSE (Project 13XP0223A) and LiSi (Project 13XP0224B)
520 _ _ |a With operando transmission electron microscopy visualizing solid-solid electrode-electrolyte interface of silicon active particles and lithium oxide solid electrolyte as a model system, we show that (de)lithiation (battery cycling) does not require all particles to be in direct contact with electrolytes across length scales of few hundreds of nanometer. A facile lithium redistribution that occurs between interconnected active particles indicates that lithium does not necessarily become isolated in individual particles due to loss of a direct contact. Our results have implications for the design of all-solid-state battery electrodes with improved capacity retention and cyclability.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|x 0
|f POF III
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|x 1
|f POF III
536 _ _ |a DFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)
|0 G:(GEPRIS)167917811
|c 167917811
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Migunov, Vadim
|0 P:(DE-Juel1)159136
|b 1
700 1 _ |a Tavabi, Amir Hossein
|0 P:(DE-Juel1)157886
|b 2
700 1 _ |a George, Chandramohan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lee, Qing
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Rosi, Paolo
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Arszelewska, Violetta
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Ganapathy, Swapna
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Vijay, Ashwin
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Ooms, Frans G. B.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Schierholz, Roland
|0 P:(DE-Juel1)161348
|b 10
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 11
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 12
700 1 _ |a Mayer, Joachim
|0 P:(DE-Juel1)130824
|b 13
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 14
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 15
700 1 _ |a Wagemaker, Marnix
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Kelder, Erik M.
|0 P:(DE-HGF)0
|b 17
773 _ _ |a 10.1021/acsaem.0c00543
|g p. acsaem.0c00543
|0 PERI:(DE-600)2916551-9
|n 6
|p 5101–5106
|t ACS applied energy materials
|v 3
|y 2020
|x 2574-0962
856 4 _ |u https://juser.fz-juelich.de/record/875392/files/acsaem.0c00543.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/875392/files/acsaem.0c00543.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:875392
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180432
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)159136
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)157886
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)161348
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)157700
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)130824
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)144121
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 15
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 1
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 2
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21