000875402 001__ 875402
000875402 005__ 20220930130238.0
000875402 0247_ $$2doi$$a10.1126/sciadv.aaz9079
000875402 0247_ $$2Handle$$a2128/24890
000875402 0247_ $$2altmetric$$aaltmetric:81688062
000875402 0247_ $$2pmid$$apmid:32548248
000875402 0247_ $$2WOS$$aWOS:000531171100032
000875402 037__ $$aFZJ-2020-02011
000875402 082__ $$a500
000875402 1001_ $$0P:(DE-Juel1)162283$$aLübben, M.$$b0
000875402 245__ $$aDesign of defect-chemical properties and device performance in memristive systems
000875402 260__ $$aWashington, DC [u.a.]$$bAssoc.$$c2020
000875402 3367_ $$2DRIVER$$aarticle
000875402 3367_ $$2DataCite$$aOutput Types/Journal article
000875402 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1589546262_11173
000875402 3367_ $$2BibTeX$$aARTICLE
000875402 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875402 3367_ $$00$$2EndNote$$aJournal Article
000875402 520__ $$aFuture development of the modern nanoelectronics and its flagships internet of things, artificial intelligence, and neuromorphic computing is largely associated with memristive elements, offering a spectrum of inevitable functionalities, atomic level scalability, and low-power operation. However, their development is limited by significant variability and still phenomenologically orientated materials’ design strategy. Here, we highlight the vital importance of materials’ purity, demonstrating that even parts-per-million foreign elements substantially change performance. Appropriate choice of chemistry and amount of doping element selectively enhances the desired functionality. Dopant/impurity-dependent structure and charge/potential distribution in the space-charge layers and cell capacitance determine the device kinetics and functions. The relation between chemical composition/purity and switching/neuromorphic performance is experimentally evidenced, providing directions for a rational design of future memristive devices.
000875402 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000875402 588__ $$aDataset connected to CrossRef
000875402 7001_ $$0P:(DE-Juel1)173924$$aCüppers, F.$$b1
000875402 7001_ $$0P:(DE-Juel1)142186$$aMohr, J.$$b2
000875402 7001_ $$00000-0002-1350-7092$$avon Witzleben, M.$$b3
000875402 7001_ $$0P:(DE-Juel1)133840$$aBreuer, U.$$b4
000875402 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b5
000875402 7001_ $$0P:(DE-Juel1)156572$$aNeumann, C.$$b6
000875402 7001_ $$0P:(DE-Juel1)131014$$aValov, I.$$b7$$eCorresponding author
000875402 773__ $$0PERI:(DE-600)2810933-8$$a10.1126/sciadv.aaz9079$$gVol. 6, no. 19, p. eaaz9079 -$$n19$$peaaz9079 -$$tScience advances$$v6$$x2375-2548$$y2020
000875402 8564_ $$uhttps://juser.fz-juelich.de/record/875402/files/eaaz9079.full.pdf$$yOpenAccess
000875402 8564_ $$uhttps://juser.fz-juelich.de/record/875402/files/eaaz9079.full.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875402 8767_ $$8APC600093196$$92020-02-17$$d2020-03-06$$eAPC$$jZahlung erfolgt$$paaz9079$$zVerl. weigert sich VAT nicht zu berechnen, USD 5355,- davon 855USD taxes
000875402 8767_ $$8APC600093196$$92020-02-17$$d2020-03-06$$eOther$$jZahlung erfolgt$$paaz9079$$ztaxes: USD 855,- von F dem Konto zugewiesen.Nicht per x-flow bearbeitet
000875402 909CO $$ooai:juser.fz-juelich.de:875402$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000875402 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173924$$aForschungszentrum Jülich$$b1$$kFZJ
000875402 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133840$$aForschungszentrum Jülich$$b4$$kFZJ
000875402 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b5$$kFZJ
000875402 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131014$$aForschungszentrum Jülich$$b7$$kFZJ
000875402 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000875402 9141_ $$y2020
000875402 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875402 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000875402 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI ADV : 2017
000875402 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bSCI ADV : 2017
000875402 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000875402 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000875402 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000875402 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875402 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875402 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875402 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000875402 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000875402 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000875402 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875402 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000875402 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875402 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000875402 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000875402 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x2
000875402 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x3
000875402 9801_ $$aFullTexts
000875402 980__ $$ajournal
000875402 980__ $$aVDB
000875402 980__ $$aUNRESTRICTED
000875402 980__ $$aI:(DE-Juel1)PGI-7-20110106
000875402 980__ $$aI:(DE-82)080009_20140620
000875402 980__ $$aI:(DE-Juel1)PGI-10-20170113
000875402 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000875402 980__ $$aAPC