Journal Article FZJ-2020-02011

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Design of defect-chemical properties and device performance in memristive systems

 ;  ;  ;  ;  ;  ;  ;

2020
Assoc. Washington, DC [u.a.]

Science advances 6(19), eaaz9079 - () [10.1126/sciadv.aaz9079]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Future development of the modern nanoelectronics and its flagships internet of things, artificial intelligence, and neuromorphic computing is largely associated with memristive elements, offering a spectrum of inevitable functionalities, atomic level scalability, and low-power operation. However, their development is limited by significant variability and still phenomenologically orientated materials’ design strategy. Here, we highlight the vital importance of materials’ purity, demonstrating that even parts-per-million foreign elements substantially change performance. Appropriate choice of chemistry and amount of doping element selectively enhances the desired functionality. Dopant/impurity-dependent structure and charge/potential distribution in the space-charge layers and cell capacitance determine the device kinetics and functions. The relation between chemical composition/purity and switching/neuromorphic performance is experimentally evidenced, providing directions for a rational design of future memristive devices.

Classification:

Contributing Institute(s):
  1. Elektronische Materialien (PGI-7)
  2. JARA-FIT (JARA-FIT)
  3. JARA Institut Green IT (PGI-10)
  4. Analytik (ZEA-3)
Research Program(s):
  1. 521 - Controlling Electron Charge-Based Phenomena (POF3-521) (POF3-521)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; IF >= 10 ; JCR ; NCBI Molecular Biology Database ; PubMed Central ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
Institute Collections > ZEA > ZEA-3
Institute Collections > PGI > PGI-10
Institute Collections > PGI > PGI-7
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2020-05-15, last modified 2022-09-30