Home > Publications database > Design of defect-chemical properties and device performance in memristive systems > print |
001 | 875402 | ||
005 | 20220930130238.0 | ||
024 | 7 | _ | |a 10.1126/sciadv.aaz9079 |2 doi |
024 | 7 | _ | |a 2128/24890 |2 Handle |
024 | 7 | _ | |a altmetric:81688062 |2 altmetric |
024 | 7 | _ | |a pmid:32548248 |2 pmid |
024 | 7 | _ | |a WOS:000531171100032 |2 WOS |
037 | _ | _ | |a FZJ-2020-02011 |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Lübben, M. |0 P:(DE-Juel1)162283 |b 0 |
245 | _ | _ | |a Design of defect-chemical properties and device performance in memristive systems |
260 | _ | _ | |a Washington, DC [u.a.] |c 2020 |b Assoc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1589546262_11173 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Future development of the modern nanoelectronics and its flagships internet of things, artificial intelligence, and neuromorphic computing is largely associated with memristive elements, offering a spectrum of inevitable functionalities, atomic level scalability, and low-power operation. However, their development is limited by significant variability and still phenomenologically orientated materials’ design strategy. Here, we highlight the vital importance of materials’ purity, demonstrating that even parts-per-million foreign elements substantially change performance. Appropriate choice of chemistry and amount of doping element selectively enhances the desired functionality. Dopant/impurity-dependent structure and charge/potential distribution in the space-charge layers and cell capacitance determine the device kinetics and functions. The relation between chemical composition/purity and switching/neuromorphic performance is experimentally evidenced, providing directions for a rational design of future memristive devices. |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Cüppers, F. |0 P:(DE-Juel1)173924 |b 1 |
700 | 1 | _ | |a Mohr, J. |0 P:(DE-Juel1)142186 |b 2 |
700 | 1 | _ | |a von Witzleben, M. |0 0000-0002-1350-7092 |b 3 |
700 | 1 | _ | |a Breuer, U. |0 P:(DE-Juel1)133840 |b 4 |
700 | 1 | _ | |a Waser, R. |0 P:(DE-Juel1)131022 |b 5 |
700 | 1 | _ | |a Neumann, C. |0 P:(DE-Juel1)156572 |b 6 |
700 | 1 | _ | |a Valov, I. |0 P:(DE-Juel1)131014 |b 7 |e Corresponding author |
773 | _ | _ | |a 10.1126/sciadv.aaz9079 |g Vol. 6, no. 19, p. eaaz9079 - |0 PERI:(DE-600)2810933-8 |n 19 |p eaaz9079 - |t Science advances |v 6 |y 2020 |x 2375-2548 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/875402/files/eaaz9079.full.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/875402/files/eaaz9079.full.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:875402 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)173924 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)133840 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)131022 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)131014 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI ADV : 2017 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b SCI ADV : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-10-20170113 |k PGI-10 |l JARA Institut Green IT |x 2 |
920 | 1 | _ | |0 I:(DE-Juel1)ZEA-3-20090406 |k ZEA-3 |l Analytik |x 3 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-Juel1)PGI-10-20170113 |
980 | _ | _ | |a I:(DE-Juel1)ZEA-3-20090406 |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|