000875442 001__ 875442
000875442 005__ 20240610121124.0
000875442 0247_ $$2doi$$a10.1126/sciadv.aaw9975
000875442 0247_ $$2Handle$$a2128/25495
000875442 0247_ $$2altmetric$$aaltmetric:86258377
000875442 0247_ $$2pmid$$apmid:32832652
000875442 0247_ $$2WOS$$aWOS:000552228100001
000875442 037__ $$aFZJ-2020-02037
000875442 082__ $$a500
000875442 1001_ $$0P:(DE-Juel1)131017$$aVliegenthart, Gerard A.$$b0$$eCorresponding author
000875442 245__ $$aFilamentous active matter: Band formation, bending, buckling, and defects
000875442 260__ $$aWashington, DC [u.a.]$$bAssoc.$$c2020
000875442 3367_ $$2DRIVER$$aarticle
000875442 3367_ $$2DataCite$$aOutput Types/Journal article
000875442 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1597326445_12929
000875442 3367_ $$2BibTeX$$aARTICLE
000875442 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875442 3367_ $$00$$2EndNote$$aJournal Article
000875442 520__ $$aMotor proteins drive persistent motion and self-organization of cytoskeletal filaments. However, state-of-the-art microscopy techniques and continuum modeling approaches focus on large length and time scales. Here, we perform component-based computer simulations of polar filaments and molecular motors linking microscopic interactions and activity to self-organization and dynamics from the filament level up to the mesoscopic domain level. Dynamic filament cross-linking and sliding and excluded-volume interactions promote formation of bundles at small densities and of active polar nematics at high densities. A buckling-type instability sets the size of polar domains and the density of topological defects. We predict a universal scaling of the active diffusion coefficient and the domain size with activity, and its dependence on parameters like motor concentration and filament persistence length. Our results provide a microscopic understanding of cytoplasmic streaming in cells and help to develop design strategies for novel engineered active materials.
000875442 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000875442 588__ $$aDataset connected to CrossRef
000875442 7001_ $$0P:(DE-Juel1)164388$$aRavichandran, Arvind$$b1
000875442 7001_ $$0P:(DE-Juel1)130920$$aRipoll, Marisol$$b2
000875442 7001_ $$0P:(DE-Juel1)130514$$aAuth, Thorsten$$b3
000875442 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b4
000875442 773__ $$0PERI:(DE-600)2810933-8$$a10.1126/sciadv.aaw9975$$gVol. 6, no. 30, p. eaaw9975 -$$n30$$peaaw9975$$tScience advances$$v6$$x2375-2548$$y2020
000875442 8564_ $$uhttps://juser.fz-juelich.de/record/875442/files/Invoice_APC600119489.pdf
000875442 8564_ $$uhttps://juser.fz-juelich.de/record/875442/files/Invoice_APC600119489.pdf?subformat=pdfa$$xpdfa
000875442 8564_ $$uhttps://juser.fz-juelich.de/record/875442/files/eaaw9975.full.pdf$$yOpenAccess
000875442 8564_ $$uhttps://juser.fz-juelich.de/record/875442/files/eaaw9975.full.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875442 8767_ $$8APC600119489$$92020-05-19$$d2020-06-21$$eAPC$$jZahlung erfolgt$$paaw9975$$zUSD 4500,- Belegnr. 1200153412
000875442 909CO $$ooai:juser.fz-juelich.de:875442$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000875442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131017$$aForschungszentrum Jülich$$b0$$kFZJ
000875442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164388$$aForschungszentrum Jülich$$b1$$kFZJ
000875442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130920$$aForschungszentrum Jülich$$b2$$kFZJ
000875442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130514$$aForschungszentrum Jülich$$b3$$kFZJ
000875442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b4$$kFZJ
000875442 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000875442 9141_ $$y2020
000875442 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875442 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000875442 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI ADV : 2017
000875442 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bSCI ADV : 2017
000875442 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000875442 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000875442 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000875442 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875442 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875442 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875442 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000875442 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000875442 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000875442 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875442 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000875442 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875442 9201_ $$0I:(DE-Juel1)IBI-5-20200312$$kIBI-5$$lTheoretische Physik der Lebenden Materie$$x0
000875442 9801_ $$aAPC
000875442 9801_ $$aFullTexts
000875442 980__ $$ajournal
000875442 980__ $$aVDB
000875442 980__ $$aUNRESTRICTED
000875442 980__ $$aI:(DE-Juel1)IBI-5-20200312
000875442 980__ $$aAPC
000875442 981__ $$aI:(DE-Juel1)IAS-2-20090406