000877347 001__ 877347
000877347 005__ 20210130005018.0
000877347 0247_ $$2doi$$a10.1021/acs.nanolett.9b05295
000877347 0247_ $$2ISSN$$a1530-6984
000877347 0247_ $$2ISSN$$a1530-6992
000877347 0247_ $$2Handle$$a2128/25139
000877347 0247_ $$2altmetric$$aaltmetric:77347154
000877347 0247_ $$2pmid$$apmid:32083885
000877347 0247_ $$2WOS$$aWOS:000526408800068
000877347 037__ $$aFZJ-2020-02154
000877347 082__ $$a660
000877347 1001_ $$0P:(DE-HGF)0$$aBanszerus, Luca$$b0$$eCorresponding author
000877347 245__ $$aSingle-Electron Double Quantum Dots in Bilayer Graphene
000877347 260__ $$aWashington, DC$$bACS Publ.$$c2020
000877347 3367_ $$2DRIVER$$aarticle
000877347 3367_ $$2DataCite$$aOutput Types/Journal article
000877347 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1593156404_10761
000877347 3367_ $$2BibTeX$$aARTICLE
000877347 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877347 3367_ $$00$$2EndNote$$aJournal Article
000877347 520__ $$aWe present transport measurements through an electrostatically defined bilayer graphene double quantum dot in the single-electron regime. With the help of a back gate, two split gates, and two finger gates, we are able to control the number of charge carriers on two gate-defined quantum dots independently between zero and five. The high tunability of the device meets requirements to make such a device a suitable building block for spin-qubits. In the single-electron regime, we determine interdot tunnel rates on the order of 2 GHz. Both, the interdot tunnel coupling as well as the capacitive interdot coupling increase with dot occupation, leading to the transition to a single quantum dot. Finite bias magneto-spectroscopy measurements allow to resolve the excited-state spectra of the first electrons in the double quantum dot and are in agreement with spin and valley conserving interdot tunneling processes.
000877347 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000877347 588__ $$aDataset connected to CrossRef
000877347 7001_ $$0P:(DE-HGF)0$$aMöller, Samuel$$b1
000877347 7001_ $$0P:(DE-Juel1)177707$$aIcking, Eike$$b2$$ufzj
000877347 7001_ $$0P:(DE-HGF)0$$aWatanabe, Kenji$$b3
000877347 7001_ $$0P:(DE-HGF)0$$aTaniguchi, Takashi$$b4
000877347 7001_ $$0P:(DE-HGF)0$$aVolk, Christian$$b5
000877347 7001_ $$0P:(DE-Juel1)180322$$aStampfer, Christoph$$b6$$ufzj
000877347 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.9b05295$$gVol. 20, no. 3, p. 2005 - 2011$$n3$$p2005 - 2011$$tNano letters$$v20$$x1530-6992$$y2020
000877347 8564_ $$uhttps://juser.fz-juelich.de/record/877347/files/acs.nanolett.9b05295-1.pdf$$yRestricted
000877347 8564_ $$uhttps://juser.fz-juelich.de/record/877347/files/main_NanoLett.pdf$$yPublished on 2020-02-21. Available in OpenAccess from 2021-02-21.$$zStatID:(DE-HGF)0510
000877347 8564_ $$uhttps://juser.fz-juelich.de/record/877347/files/acs.nanolett.9b05295-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000877347 8564_ $$uhttps://juser.fz-juelich.de/record/877347/files/main_NanoLett.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-02-21. Available in OpenAccess from 2021-02-21.$$zStatID:(DE-HGF)0510
000877347 909CO $$ooai:juser.fz-juelich.de:877347$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877347 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
000877347 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000877347 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
000877347 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000877347 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177707$$aForschungszentrum Jülich$$b2$$kFZJ
000877347 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b5$$kRWTH
000877347 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180322$$aForschungszentrum Jülich$$b6$$kFZJ
000877347 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180322$$aRWTH Aachen$$b6$$kRWTH
000877347 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000877347 9141_ $$y2020
000877347 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-06
000877347 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-06
000877347 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-06
000877347 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877347 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-06
000877347 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2018$$d2020-01-06
000877347 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-06
000877347 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-06
000877347 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-06
000877347 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-06
000877347 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2018$$d2020-01-06
000877347 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-06
000877347 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-06
000877347 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-06
000877347 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000877347 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000877347 980__ $$ajournal
000877347 980__ $$aVDB
000877347 980__ $$aUNRESTRICTED
000877347 980__ $$aI:(DE-Juel1)PGI-9-20110106
000877347 980__ $$aI:(DE-82)080009_20140620
000877347 9801_ $$aFullTexts