001     877347
005     20210130005018.0
024 7 _ |a 10.1021/acs.nanolett.9b05295
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a 2128/25139
|2 Handle
024 7 _ |a altmetric:77347154
|2 altmetric
024 7 _ |a pmid:32083885
|2 pmid
024 7 _ |a WOS:000526408800068
|2 WOS
037 _ _ |a FZJ-2020-02154
082 _ _ |a 660
100 1 _ |a Banszerus, Luca
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Single-Electron Double Quantum Dots in Bilayer Graphene
260 _ _ |a Washington, DC
|c 2020
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1593156404_10761
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present transport measurements through an electrostatically defined bilayer graphene double quantum dot in the single-electron regime. With the help of a back gate, two split gates, and two finger gates, we are able to control the number of charge carriers on two gate-defined quantum dots independently between zero and five. The high tunability of the device meets requirements to make such a device a suitable building block for spin-qubits. In the single-electron regime, we determine interdot tunnel rates on the order of 2 GHz. Both, the interdot tunnel coupling as well as the capacitive interdot coupling increase with dot occupation, leading to the transition to a single quantum dot. Finite bias magneto-spectroscopy measurements allow to resolve the excited-state spectra of the first electrons in the double quantum dot and are in agreement with spin and valley conserving interdot tunneling processes.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Möller, Samuel
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Icking, Eike
|0 P:(DE-Juel1)177707
|b 2
|u fzj
700 1 _ |a Watanabe, Kenji
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Taniguchi, Takashi
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Volk, Christian
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Stampfer, Christoph
|0 P:(DE-Juel1)180322
|b 6
|u fzj
773 _ _ |a 10.1021/acs.nanolett.9b05295
|g Vol. 20, no. 3, p. 2005 - 2011
|0 PERI:(DE-600)2048866-X
|n 3
|p 2005 - 2011
|t Nano letters
|v 20
|y 2020
|x 1530-6992
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/877347/files/acs.nanolett.9b05295-1.pdf
856 4 _ |y Published on 2020-02-21. Available in OpenAccess from 2021-02-21.
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/877347/files/main_NanoLett.pdf
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/877347/files/acs.nanolett.9b05295-1.pdf?subformat=pdfa
856 4 _ |y Published on 2020-02-21. Available in OpenAccess from 2021-02-21.
|x pdfa
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/877347/files/main_NanoLett.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877347
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)177707
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)180322
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)180322
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-06
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-06
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2018
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2018
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-06
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21