000877349 001__ 877349 000877349 005__ 20210131031203.0 000877349 0247_ $$2doi$$a10.1002/pssb.201900269 000877349 0247_ $$2ISSN$$a0031-8957 000877349 0247_ $$2ISSN$$a0370-1972 000877349 0247_ $$2ISSN$$a1521-3951 000877349 0247_ $$2Handle$$a2128/24941 000877349 0247_ $$2WOS$$aWOS:000510441200013 000877349 0247_ $$2altmetric$$aaltmetric:65636888 000877349 037__ $$aFZJ-2020-02156 000877349 082__ $$a530 000877349 1001_ $$0P:(DE-HGF)0$$aEpping, Alexander$$b0 000877349 245__ $$aInsulating State in Low‐Disorder Graphene Nanoribbons 000877349 260__ $$aWeinheim$$bWiley-VCH$$c2019 000877349 3367_ $$2DRIVER$$aarticle 000877349 3367_ $$2DataCite$$aOutput Types/Journal article 000877349 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1591101015_4524 000877349 3367_ $$2BibTeX$$aARTICLE 000877349 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000877349 3367_ $$00$$2EndNote$$aJournal Article 000877349 520__ $$aQuantum transport measurements on etched graphene nanoribbons encapsulated in hexagonal boron nitride (hBN) are reported. At zero magnetic field, the devices behave qualitatively very similar to those reported for graphene nanoribbons on SiO2 or hBN, but exhibit a considerably smaller transport gap. At magnetic fields of around 3 T, the transport behavior changes significantly and is dominated by a much larger energy gap induced by electron– electron interactions which completely suppress the transport. This energy gap increases with a slope in the order of 3–4 meV T−1, reaching values of up to 30 meV at 9 T. 000877349 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0 000877349 588__ $$aDataset connected to CrossRef 000877349 7001_ $$0P:(DE-HGF)0$$aVolk, Christian$$b1 000877349 7001_ $$0P:(DE-HGF)0$$aBuckstegge, Frederic$$b2 000877349 7001_ $$0P:(DE-HGF)0$$aWatanabe, Kenji$$b3 000877349 7001_ $$0P:(DE-HGF)0$$aTaniguchi, Takashi$$b4 000877349 7001_ $$0P:(DE-Juel1)180322$$aStampfer, Christoph$$b5$$eCorresponding author 000877349 773__ $$0PERI:(DE-600)1481096-7$$a10.1002/pssb.201900269$$gVol. 256, no. 12, p. 1900269 -$$n12$$p1900269 -$$tPhysica status solidi / B Basic research$$v256$$x1521-3951$$y2019 000877349 8564_ $$uhttps://juser.fz-juelich.de/record/877349/files/pssb.201900269.pdf$$yOpenAccess 000877349 8564_ $$uhttps://juser.fz-juelich.de/record/877349/files/pssb.201900269.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000877349 909CO $$ooai:juser.fz-juelich.de:877349$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000877349 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH 000877349 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH 000877349 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH 000877349 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180322$$aForschungszentrum Jülich$$b5$$kFZJ 000877349 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180322$$aRWTH Aachen$$b5$$kRWTH 000877349 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0 000877349 9141_ $$y2020 000877349 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27 000877349 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27 000877349 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000877349 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-27 000877349 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-27 000877349 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-27$$wger 000877349 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27 000877349 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-27 000877349 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27 000877349 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-27 000877349 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000877349 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-27 000877349 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS STATUS SOLIDI B : 2018$$d2020-02-27 000877349 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27 000877349 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-02-27$$wger 000877349 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27 000877349 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0 000877349 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1 000877349 980__ $$ajournal 000877349 980__ $$aVDB 000877349 980__ $$aUNRESTRICTED 000877349 980__ $$aI:(DE-Juel1)PGI-9-20110106 000877349 980__ $$aI:(DE-82)080009_20140620 000877349 9801_ $$aFullTexts