000877349 001__ 877349
000877349 005__ 20210131031203.0
000877349 0247_ $$2doi$$a10.1002/pssb.201900269
000877349 0247_ $$2ISSN$$a0031-8957
000877349 0247_ $$2ISSN$$a0370-1972
000877349 0247_ $$2ISSN$$a1521-3951
000877349 0247_ $$2Handle$$a2128/24941
000877349 0247_ $$2WOS$$aWOS:000510441200013
000877349 0247_ $$2altmetric$$aaltmetric:65636888
000877349 037__ $$aFZJ-2020-02156
000877349 082__ $$a530
000877349 1001_ $$0P:(DE-HGF)0$$aEpping, Alexander$$b0
000877349 245__ $$aInsulating State in Low‐Disorder Graphene Nanoribbons
000877349 260__ $$aWeinheim$$bWiley-VCH$$c2019
000877349 3367_ $$2DRIVER$$aarticle
000877349 3367_ $$2DataCite$$aOutput Types/Journal article
000877349 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1591101015_4524
000877349 3367_ $$2BibTeX$$aARTICLE
000877349 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877349 3367_ $$00$$2EndNote$$aJournal Article
000877349 520__ $$aQuantum transport measurements on etched graphene nanoribbons encapsulated in hexagonal boron nitride (hBN) are reported. At zero magnetic field, the devices behave qualitatively very similar to those reported for graphene nanoribbons on SiO2 or hBN, but exhibit a considerably smaller transport gap. At magnetic fields of around 3 T, the transport behavior changes significantly and is dominated by a much larger energy gap induced by electron– electron interactions which completely suppress the transport. This energy gap increases with a slope in the order of 3–4 meV T−1, reaching values of up to 30 meV at 9 T.
000877349 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000877349 588__ $$aDataset connected to CrossRef
000877349 7001_ $$0P:(DE-HGF)0$$aVolk, Christian$$b1
000877349 7001_ $$0P:(DE-HGF)0$$aBuckstegge, Frederic$$b2
000877349 7001_ $$0P:(DE-HGF)0$$aWatanabe, Kenji$$b3
000877349 7001_ $$0P:(DE-HGF)0$$aTaniguchi, Takashi$$b4
000877349 7001_ $$0P:(DE-Juel1)180322$$aStampfer, Christoph$$b5$$eCorresponding author
000877349 773__ $$0PERI:(DE-600)1481096-7$$a10.1002/pssb.201900269$$gVol. 256, no. 12, p. 1900269 -$$n12$$p1900269 -$$tPhysica status solidi / B Basic research$$v256$$x1521-3951$$y2019
000877349 8564_ $$uhttps://juser.fz-juelich.de/record/877349/files/pssb.201900269.pdf$$yOpenAccess
000877349 8564_ $$uhttps://juser.fz-juelich.de/record/877349/files/pssb.201900269.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877349 909CO $$ooai:juser.fz-juelich.de:877349$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877349 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000877349 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000877349 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000877349 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180322$$aForschungszentrum Jülich$$b5$$kFZJ
000877349 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180322$$aRWTH Aachen$$b5$$kRWTH
000877349 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000877349 9141_ $$y2020
000877349 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27
000877349 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27
000877349 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877349 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-27
000877349 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-27
000877349 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-27$$wger
000877349 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27
000877349 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-27
000877349 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27
000877349 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-27
000877349 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877349 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-27
000877349 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS STATUS SOLIDI B : 2018$$d2020-02-27
000877349 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000877349 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-02-27$$wger
000877349 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27
000877349 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000877349 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000877349 980__ $$ajournal
000877349 980__ $$aVDB
000877349 980__ $$aUNRESTRICTED
000877349 980__ $$aI:(DE-Juel1)PGI-9-20110106
000877349 980__ $$aI:(DE-82)080009_20140620
000877349 9801_ $$aFullTexts