001 | 877349 | ||
005 | 20210131031203.0 | ||
024 | 7 | _ | |a 10.1002/pssb.201900269 |2 doi |
024 | 7 | _ | |a 0031-8957 |2 ISSN |
024 | 7 | _ | |a 0370-1972 |2 ISSN |
024 | 7 | _ | |a 1521-3951 |2 ISSN |
024 | 7 | _ | |a 2128/24941 |2 Handle |
024 | 7 | _ | |a WOS:000510441200013 |2 WOS |
024 | 7 | _ | |a altmetric:65636888 |2 altmetric |
037 | _ | _ | |a FZJ-2020-02156 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Epping, Alexander |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Insulating State in Low‐Disorder Graphene Nanoribbons |
260 | _ | _ | |a Weinheim |c 2019 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1591101015_4524 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Quantum transport measurements on etched graphene nanoribbons encapsulated in hexagonal boron nitride (hBN) are reported. At zero magnetic field, the devices behave qualitatively very similar to those reported for graphene nanoribbons on SiO2 or hBN, but exhibit a considerably smaller transport gap. At magnetic fields of around 3 T, the transport behavior changes significantly and is dominated by a much larger energy gap induced by electron– electron interactions which completely suppress the transport. This energy gap increases with a slope in the order of 3–4 meV T−1, reaching values of up to 30 meV at 9 T. |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Volk, Christian |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Buckstegge, Frederic |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Watanabe, Kenji |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Taniguchi, Takashi |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Stampfer, Christoph |0 P:(DE-Juel1)180322 |b 5 |e Corresponding author |
773 | _ | _ | |a 10.1002/pssb.201900269 |g Vol. 256, no. 12, p. 1900269 - |0 PERI:(DE-600)1481096-7 |n 12 |p 1900269 - |t Physica status solidi / B Basic research |v 256 |y 2019 |x 1521-3951 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/877349/files/pssb.201900269.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/877349/files/pssb.201900269.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:877349 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)180322 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 5 |6 P:(DE-Juel1)180322 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-02-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-02-27 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-02-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-02-27 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2020-02-27 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-02-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-02-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-02-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-02-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-02-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS STATUS SOLIDI B : 2018 |d 2020-02-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-02-27 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-02-27 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-02-27 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|