000877350 001__ 877350
000877350 005__ 20230217105306.0
000877350 0247_ $$2doi$$a10.1002/pssb.202000007
000877350 0247_ $$2ISSN$$a0031-8957
000877350 0247_ $$2ISSN$$a0370-1972
000877350 0247_ $$2ISSN$$a1521-3951
000877350 0247_ $$2Handle$$a2128/27316
000877350 0247_ $$2WOS$$aWOS:000536855800001
000877350 037__ $$aFZJ-2020-02157
000877350 082__ $$a530
000877350 1001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b0$$eCorresponding author$$ufzj
000877350 245__ $$aMolecular‐Beam Epitaxy of 3D Topological Insulator Thin Films and Devices on Si Substrates
000877350 260__ $$aWeinheim$$bWiley-VCH$$c2021
000877350 3367_ $$2DRIVER$$aarticle
000877350 3367_ $$2DataCite$$aOutput Types/Journal article
000877350 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615216273_5079
000877350 3367_ $$2BibTeX$$aARTICLE
000877350 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877350 3367_ $$00$$2EndNote$$aJournal Article
000877350 520__ $$aTopological insulators (TIs) are currently in the focus of interest due to their intriguing physical properties related to topologically protected surface states. The ability to grow thin films of these complex layered materials and even sophisticated devices is the key to explore their fundamental phenomena, giving insights into modern solid‐state physics. However, complex materials composed of layers only weakly bonded via van der Waals (vdW) forces offer unmatched challenges for the deposition of thin epitaxial films. Herein, it is reported on the growth of (Bi,Sb)2(Te,Se)3 TI films on Si (111) substrates using molecular‐beam epitaxy. Special issues are discussed, such as understanding the peculiar vdW growth mode, observing and annihilating crystal defects, reducing bulk carrier concentration, tuning the Fermi level to the Dirac point, and, finally, fabricating TI/superconductor devices fully in situ.
000877350 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000877350 588__ $$aDataset connected to CrossRef
000877350 773__ $$0PERI:(DE-600)1481096-7$$a10.1002/pssb.202000007$$gp. 2000007 -$$n1$$p2000007$$tPhysica status solidi / B$$v258$$x0370-1972$$y2021
000877350 8564_ $$uhttps://juser.fz-juelich.de/record/877350/files/pssb.202000007.pdf$$yOpenAccess
000877350 8767_ $$92020-05-28$$d2020-06-02$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$ppssb.202000007
000877350 909CO $$ooai:juser.fz-juelich.de:877350$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000877350 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-31
000877350 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-31
000877350 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877350 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-31
000877350 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-31
000877350 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-31$$wger
000877350 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000877350 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-31
000877350 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-31
000877350 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877350 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-31
000877350 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS STATUS SOLIDI B : 2019$$d2021-01-31
000877350 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2021-01-31
000877350 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000877350 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-31$$wger
000877350 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-31
000877350 9141_ $$y2021
000877350 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich$$b0$$kFZJ
000877350 9130_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877350 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877350 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000877350 980__ $$ajournal
000877350 980__ $$aVDB
000877350 980__ $$aUNRESTRICTED
000877350 980__ $$aI:(DE-Juel1)PGI-9-20110106
000877350 980__ $$aAPC
000877350 9801_ $$aAPCUSERDEL
000877350 9801_ $$aAPC
000877350 9801_ $$aFullTexts