000877544 001__ 877544
000877544 005__ 20220930130242.0
000877544 0247_ $$2doi$$a10.1007/s11104-020-04604-2
000877544 0247_ $$2Handle$$a2128/25870
000877544 0247_ $$2WOS$$aWOS:000560907800003
000877544 037__ $$aFZJ-2020-02280
000877544 082__ $$a580
000877544 1001_ $$0P:(DE-Juel1)168266$$aWang, Yi$$b0$$eCorresponding author$$ufzj
000877544 245__ $$aMagnesium isotope fractionation reflects plant response to magnesium deficiency in magnesium uptake and allocation: a greenhouse study with wheat
000877544 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2020
000877544 3367_ $$2DRIVER$$aarticle
000877544 3367_ $$2DataCite$$aOutput Types/Journal article
000877544 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602590952_2978
000877544 3367_ $$2BibTeX$$aARTICLE
000877544 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877544 3367_ $$00$$2EndNote$$aJournal Article
000877544 520__ $$aAims Magnesium (Mg) deficiency is detrimental to plant growth. However, how plants respond to Mg deficiency via regulation of Mg uptake and allocation is yet not fully understood. In this study, we tested whether Mg isotope compositions (δ26Mg) associated with Mg mass balance of the plants could be used as an indicator to trace Mg uptake and subsequent translocation processes under sufficient and low-Mg supply conditions. We aimed at using stable isotope fractionation as a novel proxy for nutrient uptake and cycling in plants.MethodsWe grew wheat plants (Triticum aestivum) in a greenhouse under control (1 mM Mg) and low-Mg supply (0.05 mM Mg) conditions, respectively. The Mg concentrations and isotope compositions in roots, stems, leaves and spikes/grains at different growth stages were analyzed.ResultsWheat plants were systematically enriched in heavy Mg isotopes relative to the nutrient solution regardless of Mg supply conditions. With crop growth, the δ26Mg of the whole plants, as well as each plant organ, gradually shifted towards higher values in the control. However, the δ26Mg value of the whole plants in the low-Mg supply did not vary significantly. In addition, the wheat stems and spikes showed continuous enrichment of lighter Mg isotopes in the low-Mg supply than those in the control.ConclusionsAs reflected from Mg isotope compositions, the Mg supply in the growth media could affect the Mg uptake and subsequent translocation processes in plants. Changes in δ26Mg indicated that wheat plants likely regulated their Mg uptake strategy by switching between active and passive pathways during their life cycle. When Mg supply was low, a more negative δ26Mg value of the spikes suggested a potentially enhanced remobilization of Mg from leaves to spikes. Our results showed that Mg stable isotopes can provide new insights into plants’ response to nutrient shortage.
000877544 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000877544 588__ $$aDataset connected to CrossRef
000877544 7001_ $$0P:(DE-Juel1)138881$$aWu, Bei$$b1$$ufzj
000877544 7001_ $$0P:(DE-Juel1)129438$$aBerns, Anne E.$$b2$$ufzj
000877544 7001_ $$0P:(DE-Juel1)168264$$aXing, Ying$$b3$$ufzj
000877544 7001_ $$0P:(DE-Juel1)129349$$aKuhn, Arnd J.$$b4$$ufzj
000877544 7001_ $$0P:(DE-Juel1)129427$$aAmelung, Wulf$$b5$$ufzj
000877544 773__ $$0PERI:(DE-600)1478535-3$$a10.1007/s11104-020-04604-2$$p93–105$$tPlant and soil$$v455$$x0032-079X$$y2020
000877544 8564_ $$uhttps://juser.fz-juelich.de/record/877544/files/Wang2020_Article_MagnesiumIsotopeFractionationR.pdf$$yOpenAccess
000877544 8564_ $$uhttps://juser.fz-juelich.de/record/877544/files/Wang2020_Article_MagnesiumIsotopeFractionationR.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877544 8767_ $$d2020-06-15$$eHybrid-OA$$jDEAL$$lDEAL: Springer$$pPLSO-D-19-01406R3$$zapproved im dashboard
000877544 909CO $$ooai:juser.fz-juelich.de:877544$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000877544 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168266$$aForschungszentrum Jülich$$b0$$kFZJ
000877544 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138881$$aForschungszentrum Jülich$$b1$$kFZJ
000877544 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129438$$aForschungszentrum Jülich$$b2$$kFZJ
000877544 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168264$$aForschungszentrum Jülich$$b3$$kFZJ
000877544 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129349$$aForschungszentrum Jülich$$b4$$kFZJ
000877544 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich$$b5$$kFZJ
000877544 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000877544 9141_ $$y2020
000877544 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000877544 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000877544 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000877544 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-16
000877544 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-16
000877544 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-16
000877544 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-01-16
000877544 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000877544 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-16
000877544 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2020-01-16$$wger
000877544 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-16
000877544 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877544 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-16
000877544 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT SOIL : 2018$$d2020-01-16
000877544 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-16
000877544 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-16$$wger
000877544 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000877544 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877544 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-16$$wger
000877544 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000877544 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000877544 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x1
000877544 980__ $$ajournal
000877544 980__ $$aVDB
000877544 980__ $$aUNRESTRICTED
000877544 980__ $$aI:(DE-Juel1)IBG-2-20101118
000877544 980__ $$aI:(DE-Juel1)IBG-3-20101118
000877544 980__ $$aAPC
000877544 9801_ $$aAPC
000877544 9801_ $$aFullTexts