Journal Article FZJ-2020-02280

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Magnesium isotope fractionation reflects plant response to magnesium deficiency in magnesium uptake and allocation: a greenhouse study with wheat

 ;  ;  ;  ;  ;

2020
Springer Science + Business Media B.V Dordrecht [u.a.]

Plant and soil 455, 93–105 () [10.1007/s11104-020-04604-2]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Aims Magnesium (Mg) deficiency is detrimental to plant growth. However, how plants respond to Mg deficiency via regulation of Mg uptake and allocation is yet not fully understood. In this study, we tested whether Mg isotope compositions (δ26Mg) associated with Mg mass balance of the plants could be used as an indicator to trace Mg uptake and subsequent translocation processes under sufficient and low-Mg supply conditions. We aimed at using stable isotope fractionation as a novel proxy for nutrient uptake and cycling in plants.MethodsWe grew wheat plants (Triticum aestivum) in a greenhouse under control (1 mM Mg) and low-Mg supply (0.05 mM Mg) conditions, respectively. The Mg concentrations and isotope compositions in roots, stems, leaves and spikes/grains at different growth stages were analyzed.ResultsWheat plants were systematically enriched in heavy Mg isotopes relative to the nutrient solution regardless of Mg supply conditions. With crop growth, the δ26Mg of the whole plants, as well as each plant organ, gradually shifted towards higher values in the control. However, the δ26Mg value of the whole plants in the low-Mg supply did not vary significantly. In addition, the wheat stems and spikes showed continuous enrichment of lighter Mg isotopes in the low-Mg supply than those in the control.ConclusionsAs reflected from Mg isotope compositions, the Mg supply in the growth media could affect the Mg uptake and subsequent translocation processes in plants. Changes in δ26Mg indicated that wheat plants likely regulated their Mg uptake strategy by switching between active and passive pathways during their life cycle. When Mg supply was low, a more negative δ26Mg value of the spikes suggested a potentially enhanced remobilization of Mg from leaves to spikes. Our results showed that Mg stable isotopes can provide new insights into plants’ response to nutrient shortage.

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
  2. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; DEAL Springer ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; National-Konsortium ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Institute Collections > IBG > IBG-2
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2020-06-15, last modified 2022-09-30