000877569 001__ 877569
000877569 005__ 20240711092247.0
000877569 0247_ $$2doi$$a10.1111/gcbb.12694
000877569 0247_ $$2ISSN$$a1757-1693
000877569 0247_ $$2ISSN$$a1757-1707
000877569 0247_ $$2Handle$$a2128/25393
000877569 0247_ $$2altmetric$$aaltmetric:81879958
000877569 0247_ $$2WOS$$aWOS:000540284500001
000877569 037__ $$aFZJ-2020-02294
000877569 041__ $$aEnglish
000877569 082__ $$a570
000877569 1001_ $$0P:(DE-Juel1)129475$$aJablonowski, Nicolai David$$b0$$eCorresponding author
000877569 245__ $$aFull assessment of Sida (Sida hermaphrodita) biomass as a solid fuel
000877569 260__ $$aOxford$$bWiley-Blackwell$$c2020
000877569 3367_ $$2DRIVER$$aarticle
000877569 3367_ $$2DataCite$$aOutput Types/Journal article
000877569 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1665656341_23349
000877569 3367_ $$2BibTeX$$aARTICLE
000877569 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877569 3367_ $$00$$2EndNote$$aJournal Article
000877569 520__ $$aDue to an increased awareness of climate change and limited fossil resources, the demand for alternative energy carriers such as biomass has risen significantly during the past years. This development is supported by the idea of a transition to a bio‐based economy reducing fossil‐based carbon dioxide emissions. Based on this trend, biomass for energy is expected to be used in the EU mainly for heating until the end of the decade. The perennial herbaceous mallow plant Sida hermaphrodita (L.) Rusby (‘Sida’) has high potential as an alternative biomass plant for energy purposes. Different density cultivation scenarios of Sida accounting for 1, 2, or 4 plants per m2 resulted in a total biomass yield of 21, 28, and 34 tons dry matter/ha, respectively, over a 3‐year period under agricultural conditions while the overall investment costs almost doubled from 2 to 4 plants per m2. Subsequently, Sida biomass was used as SI) chips, SII) pellets, and SIII) briquettes for combustion studies at pilot plant scale. Pellets outcompeted chips and briquettes by showing low CO emission of 40 mg/Nm3, good burnout, and low slagging behavior, however, with elevated NOx and SO2 levels. In contrast, combustion of chips and briquettes displayed high CO emissions of >1,300 mg/Nm3, while SO2 values were below 100 mg/Nm3. Contents of HCl in the flue gas ranged between 32 and 52 mg/Nm3 for all Sida fuels tested. High contents of alkaline earth metals such as CaO resulted in high ash melting points of up to 1,450°C. Life cycle assessment results showed the lowest ecological impact for Sida pellets taking all production parameters and environmental categories into consideration, showing further advantages of Sida over other alternative biomasses. Overall, the results indicate the improved applicability of pelletized Sida biomass as a renewable biogenic energy carrier for combustion.
000877569 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000877569 588__ $$aDataset connected to CrossRef
000877569 7001_ $$0P:(DE-Juel1)136814$$aKollmann, Tobias$$b1
000877569 7001_ $$0P:(DE-HGF)0$$aMeiller, Martin$$b2
000877569 7001_ $$0P:(DE-Juel1)166092$$aDohrn, Matthias$$b3
000877569 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b4$$ufzj
000877569 7001_ $$0P:(DE-Juel1)161129$$aNabel, Moritz$$b5
000877569 7001_ $$0P:(DE-Juel1)130493$$aZapp, Petra$$b6
000877569 7001_ $$0P:(DE-Juel1)173653$$aSchonhoff, Andreas$$b7
000877569 7001_ $$0P:(DE-Juel1)166424$$aSchrey, Silvia Diane$$b8
000877569 773__ $$0PERI:(DE-600)2495051-8$$a10.1111/gcbb.12694$$gp. gcbb.12694$$n8$$p618-635$$tGlobal change biology  / Bioenergy Bioenergy$$v12$$x1757-1707$$y2020
000877569 8564_ $$uhttps://juser.fz-juelich.de/record/877569/files/MPDL_R-2020-00457.pdf
000877569 8564_ $$uhttps://juser.fz-juelich.de/record/877569/files/MPDL_R-2020-00457.pdf?subformat=pdfa$$xpdfa
000877569 8564_ $$uhttps://juser.fz-juelich.de/record/877569/files/gcbb.12694.pdf$$yOpenAccess
000877569 8564_ $$uhttps://juser.fz-juelich.de/record/877569/files/gcbb.12694.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877569 8767_ $$8R-2020-00457$$92020-08-20$$d2020-09-01$$eAPC$$jZahlung erfolgt$$lDEAL: Wiley$$pGCB-B-OR-20-021
000877569 909CO $$ooai:juser.fz-juelich.de:877569$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000877569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129475$$aForschungszentrum Jülich$$b0$$kFZJ
000877569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136814$$aForschungszentrum Jülich$$b1$$kFZJ
000877569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b4$$kFZJ
000877569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161129$$aForschungszentrum Jülich$$b5$$kFZJ
000877569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130493$$aForschungszentrum Jülich$$b6$$kFZJ
000877569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173653$$aForschungszentrum Jülich$$b7$$kFZJ
000877569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166424$$aForschungszentrum Jülich$$b8$$kFZJ
000877569 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000877569 9141_ $$y2020
000877569 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27
000877569 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27
000877569 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-02-27
000877569 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-02-27
000877569 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-27
000877569 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-02-27
000877569 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGCB BIOENERGY : 2018$$d2020-02-27
000877569 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-02-27
000877569 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-02-27
000877569 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27
000877569 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-02-27
000877569 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27
000877569 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-27
000877569 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877569 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-27
000877569 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-02-27
000877569 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-02-27
000877569 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-27
000877569 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000877569 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877569 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27
000877569 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000877569 9201_ $$0I:(DE-Juel1)IEK-STE-20101013$$kIEK-STE$$lSystemforschung und Technologische Entwicklung$$x1
000877569 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x2
000877569 9801_ $$aAPC
000877569 9801_ $$aFullTexts
000877569 980__ $$ajournal
000877569 980__ $$aVDB
000877569 980__ $$aI:(DE-Juel1)IBG-2-20101118
000877569 980__ $$aI:(DE-Juel1)IEK-STE-20101013
000877569 980__ $$aI:(DE-Juel1)IEK-2-20101013
000877569 980__ $$aAPC
000877569 980__ $$aUNRESTRICTED
000877569 981__ $$aI:(DE-Juel1)IMD-1-20101013