000877579 001__ 877579
000877579 005__ 20240712100852.0
000877579 0247_ $$2doi$$a10.1364/OE.394101
000877579 0247_ $$2Handle$$a2128/25552
000877579 0247_ $$2pmid$$apmid:32680059
000877579 0247_ $$2WOS$$aWOS:000547061200008
000877579 037__ $$aFZJ-2020-02301
000877579 082__ $$a530
000877579 1001_ $$0P:(DE-Juel1)171260$$aWei, Daikang$$b0$$eCorresponding author$$ufzj
000877579 245__ $$aThermally stable monolithic Doppler asymmetric spatial heterodyne interferometer: optical design and laboratory performance
000877579 260__ $$aWashington, DC$$c2020
000877579 3367_ $$2DRIVER$$aarticle
000877579 3367_ $$2DataCite$$aOutput Types/Journal article
000877579 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599478960_14704
000877579 3367_ $$2BibTeX$$aARTICLE
000877579 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877579 3367_ $$00$$2EndNote$$aJournal Article
000877579 520__ $$aWe report on a thermally stable monolithic Doppler asymmetric spatial heterodyne (DASH) interferometer with field-widening prisms for thermospheric wind measurements by observing the Doppler shift of the airglow emission. Analytical deduction and numerical simulation are applied to determine the central optical path difference, the thermal compensation condition and the field-widening design. A monolithic interferometer with optimized configuration was built and tested in the laboratory. Laboratory tests show that the best visibility of 0.94 was realized with the 9 ° field-of-view illumination, while the thermal responses of the spatial frequency and the optical phase offset are 0.0154 cm−1/°C and 0.469 rad/°C, respectively.
000877579 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000877579 588__ $$aDataset connected to CrossRef
000877579 7001_ $$0P:(DE-HGF)0$$aZhu, Yajun$$b1
000877579 7001_ $$0P:(DE-HGF)0$$aLiu, JIlin$$b2
000877579 7001_ $$0P:(DE-Juel1)174127$$aGong, Qiucheng$$b3$$ufzj
000877579 7001_ $$0P:(DE-Juel1)129128$$aKaufmann, Martin$$b4
000877579 7001_ $$0P:(DE-Juel1)177834$$aOlschewski, Friedhelm$$b5$$ufzj
000877579 7001_ $$0P:(DE-HGF)0$$aKnieling, Peter$$b6
000877579 7001_ $$0P:(DE-HGF)0$$aXu, Jiyao$$b7
000877579 7001_ $$0P:(DE-Juel1)16343$$aKoppmann, Ralf$$b8
000877579 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b9$$ufzj
000877579 773__ $$0PERI:(DE-600)1491859-6$$a10.1364/OE.394101$$gVol. 28, no. 14, p. 19887 -$$n14$$p19887 -$$tOptics express$$v28$$x1094-4087$$y2020
000877579 8564_ $$uhttps://juser.fz-juelich.de/record/877579/files/oe-28-14-19887.pdf$$yOpenAccess
000877579 8564_ $$uhttps://juser.fz-juelich.de/record/877579/files/oe-28-14-19887.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877579 8767_ $$81318752$$92020-06-17$$d2020-06-17$$eAPC$$jZahlung erfolgt$$lKK: Barbers$$p394101$$zUSD 2230,-
000877579 909CO $$ooai:juser.fz-juelich.de:877579$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000877579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171260$$aForschungszentrum Jülich$$b0$$kFZJ
000877579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174127$$aForschungszentrum Jülich$$b3$$kFZJ
000877579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129128$$aForschungszentrum Jülich$$b4$$kFZJ
000877579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177834$$aForschungszentrum Jülich$$b5$$kFZJ
000877579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b9$$kFZJ
000877579 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000877579 9141_ $$y2020
000877579 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-02
000877579 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-02
000877579 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877579 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bOPT EXPRESS : 2018$$d2020-01-02
000877579 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-02
000877579 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-02
000877579 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-02
000877579 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-02
000877579 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-02
000877579 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-02
000877579 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-02
000877579 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877579 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-02
000877579 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-02
000877579 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-02
000877579 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-02
000877579 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-02
000877579 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-02
000877579 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-02
000877579 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000877579 9801_ $$aAPC
000877579 9801_ $$aFullTexts
000877579 980__ $$ajournal
000877579 980__ $$aVDB
000877579 980__ $$aUNRESTRICTED
000877579 980__ $$aI:(DE-Juel1)IEK-7-20101013
000877579 980__ $$aAPC
000877579 981__ $$aI:(DE-Juel1)ICE-4-20101013