001     877579
005     20240712100852.0
024 7 _ |a 10.1364/OE.394101
|2 doi
024 7 _ |a 2128/25552
|2 Handle
024 7 _ |a pmid:32680059
|2 pmid
024 7 _ |a WOS:000547061200008
|2 WOS
037 _ _ |a FZJ-2020-02301
082 _ _ |a 530
100 1 _ |a Wei, Daikang
|0 P:(DE-Juel1)171260
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Thermally stable monolithic Doppler asymmetric spatial heterodyne interferometer: optical design and laboratory performance
260 _ _ |a Washington, DC
|c 2020
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1599478960_14704
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We report on a thermally stable monolithic Doppler asymmetric spatial heterodyne (DASH) interferometer with field-widening prisms for thermospheric wind measurements by observing the Doppler shift of the airglow emission. Analytical deduction and numerical simulation are applied to determine the central optical path difference, the thermal compensation condition and the field-widening design. A monolithic interferometer with optimized configuration was built and tested in the laboratory. Laboratory tests show that the best visibility of 0.94 was realized with the 9 ° field-of-view illumination, while the thermal responses of the spatial frequency and the optical phase offset are 0.0154 cm−1/°C and 0.469 rad/°C, respectively.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zhu, Yajun
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Liu, JIlin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Gong, Qiucheng
|0 P:(DE-Juel1)174127
|b 3
|u fzj
700 1 _ |a Kaufmann, Martin
|0 P:(DE-Juel1)129128
|b 4
700 1 _ |a Olschewski, Friedhelm
|0 P:(DE-Juel1)177834
|b 5
|u fzj
700 1 _ |a Knieling, Peter
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Xu, Jiyao
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Koppmann, Ralf
|0 P:(DE-Juel1)16343
|b 8
700 1 _ |a Riese, Martin
|0 P:(DE-Juel1)129145
|b 9
|u fzj
773 _ _ |a 10.1364/OE.394101
|g Vol. 28, no. 14, p. 19887 -
|0 PERI:(DE-600)1491859-6
|n 14
|p 19887 -
|t Optics express
|v 28
|y 2020
|x 1094-4087
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/877579/files/oe-28-14-19887.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/877579/files/oe-28-14-19887.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877579
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171260
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)174127
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129128
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)177834
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129145
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b OPT EXPRESS : 2018
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-01-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-02
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21