Home > Workflow collections > Publication Charges > Thermally stable monolithic Doppler asymmetric spatial heterodyne interferometer: optical design and laboratory performance > print |
001 | 877579 | ||
005 | 20240712100852.0 | ||
024 | 7 | _ | |a 10.1364/OE.394101 |2 doi |
024 | 7 | _ | |a 2128/25552 |2 Handle |
024 | 7 | _ | |a pmid:32680059 |2 pmid |
024 | 7 | _ | |a WOS:000547061200008 |2 WOS |
037 | _ | _ | |a FZJ-2020-02301 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Wei, Daikang |0 P:(DE-Juel1)171260 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Thermally stable monolithic Doppler asymmetric spatial heterodyne interferometer: optical design and laboratory performance |
260 | _ | _ | |a Washington, DC |c 2020 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1599478960_14704 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We report on a thermally stable monolithic Doppler asymmetric spatial heterodyne (DASH) interferometer with field-widening prisms for thermospheric wind measurements by observing the Doppler shift of the airglow emission. Analytical deduction and numerical simulation are applied to determine the central optical path difference, the thermal compensation condition and the field-widening design. A monolithic interferometer with optimized configuration was built and tested in the laboratory. Laboratory tests show that the best visibility of 0.94 was realized with the 9 ° field-of-view illumination, while the thermal responses of the spatial frequency and the optical phase offset are 0.0154 cm−1/°C and 0.469 rad/°C, respectively. |
536 | _ | _ | |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244) |0 G:(DE-HGF)POF3-244 |c POF3-244 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Zhu, Yajun |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Liu, JIlin |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Gong, Qiucheng |0 P:(DE-Juel1)174127 |b 3 |u fzj |
700 | 1 | _ | |a Kaufmann, Martin |0 P:(DE-Juel1)129128 |b 4 |
700 | 1 | _ | |a Olschewski, Friedhelm |0 P:(DE-Juel1)177834 |b 5 |u fzj |
700 | 1 | _ | |a Knieling, Peter |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Xu, Jiyao |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Koppmann, Ralf |0 P:(DE-Juel1)16343 |b 8 |
700 | 1 | _ | |a Riese, Martin |0 P:(DE-Juel1)129145 |b 9 |u fzj |
773 | _ | _ | |a 10.1364/OE.394101 |g Vol. 28, no. 14, p. 19887 - |0 PERI:(DE-600)1491859-6 |n 14 |p 19887 - |t Optics express |v 28 |y 2020 |x 1094-4087 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/877579/files/oe-28-14-19887.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/877579/files/oe-28-14-19887.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:877579 |p openaire |p open_access |p OpenAPC |p driver |p VDB:Earth_Environment |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)171260 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)174127 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129128 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)177834 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)129145 |
913 | 1 | _ | |a DE-HGF |l Atmosphäre und Klima |1 G:(DE-HGF)POF3-240 |0 G:(DE-HGF)POF3-244 |2 G:(DE-HGF)POF3-200 |v Composition and dynamics of the upper troposphere and middle atmosphere |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Erde und Umwelt |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-02 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b OPT EXPRESS : 2018 |d 2020-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2020-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2020-01-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-02 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2020-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-02 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-02 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2020-01-02 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |f 2020-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2020-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-02 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-7-20101013 |k IEK-7 |l Stratosphäre |x 0 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-7-20101013 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)ICE-4-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|