| Home > Workflow collections > Publication Charges > Self assembled monolayer of silica nanoparticles with improved order by drop casting > print |
| 001 | 877585 | ||
| 005 | 20250129094253.0 | ||
| 024 | 7 | _ | |a 10.1039/D0RA00936A |2 doi |
| 024 | 7 | _ | |a 2128/25080 |2 Handle |
| 024 | 7 | _ | |a WOS:000537264400041 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-02307 |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Qdemat, Asma |0 P:(DE-Juel1)169176 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Self assembled monolayer of silica nanoparticles with improved order by drop casting |
| 260 | _ | _ | |a London |c 2020 |b RSC Publishing |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1617220906_32719 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a This paper reports on the formation of large area, self assembled, highly ordered monolayers of stearyl alcohol grafted silica nanospheres of ≈50 nm diameter on a silicon substrate based on the drop-casting method. Our novel approach to achieve improved order uses stearyl alcohol as an assistant by adding it to the colloidal NanoParticle (NP) dispersion from which the monolayers are formed. Additionally, a heat treatment step is added, to melt the stearyl alcohol in the monolayer and thereby give the particles more time to further self-assemble, leading to additional improvement in the monolayer quality. The formation of the monolayers is significantly affected by the concentration of the NPs and the stearyl alcohol, the volume of the drop as well as the time of the heat treatment. A high surface coverage and uniform monolayer film of SiO2 NPs is achieved by appropriate control of the above-mentioned preparation parameters. Structural characterization of the obtained SiO2 NP monolayer was done locally by Scanning Electron Microscopy (SEM), and globally by X-ray reflectivity (XRR) and grazing incidence small-angle X-ray scattering (GISAXS), where the data was reproduced by simulation within the Distorted Wave Born Approximation (DWBA). In conclusion, our modified drop-casting method is a simple, inexpensive method, which provides highly ordered self-assembled monolayers of silica particles, if combined with a compatible additive and a heat treatment step. This method might be more general and also applicable to different particles after finding an appropriate additive. |
| 536 | _ | _ | |a 144 - Controlling Collective States (POF3-144) |0 G:(DE-HGF)POF3-144 |c POF3-144 |f POF III |x 0 |
| 536 | _ | _ | |a 524 - Controlling Collective States (POF3-524) |0 G:(DE-HGF)POF3-524 |c POF3-524 |f POF III |x 1 |
| 536 | _ | _ | |a 6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621) |0 G:(DE-HGF)POF3-6212 |c POF3-621 |f POF III |x 2 |
| 536 | _ | _ | |a 6213 - Materials and Processes for Energy and Transport Technologies (POF3-621) |0 G:(DE-HGF)POF3-6213 |c POF3-621 |f POF III |x 3 |
| 536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) |0 G:(DE-HGF)POF3-6G4 |c POF3-623 |f POF III |x 4 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 650 | 2 | 7 | |a Chemistry |0 V:(DE-MLZ)SciArea-110 |2 V:(DE-HGF) |x 0 |
| 650 | 2 | 7 | |a Instrument and Method Development |0 V:(DE-MLZ)SciArea-220 |2 V:(DE-HGF) |x 1 |
| 650 | 1 | 7 | |a Chemical Reactions and Advanced Materials |0 V:(DE-MLZ)GC-1603-2016 |2 V:(DE-HGF) |x 0 |
| 693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
| 700 | 1 | _ | |a Kentzinger, Emmanuel |0 P:(DE-Juel1)130754 |b 1 |
| 700 | 1 | _ | |a Buitenhuis, Johan |0 P:(DE-Juel1)130577 |b 2 |
| 700 | 1 | _ | |a Rücker, Ulrich |0 P:(DE-Juel1)130928 |b 3 |
| 700 | 1 | _ | |a Ganeva, Marina |0 P:(DE-Juel1)161101 |b 4 |
| 700 | 1 | _ | |a Brückel, Thomas |0 P:(DE-Juel1)130572 |b 5 |
| 773 | _ | _ | |a 10.1039/D0RA00936A |g Vol. 10, no. 31, p. 18339 - 18347 |0 PERI:(DE-600)2623224-8 |n 31 |p 18339 - 18347 |t RSC Advances |v 10 |y 2020 |x 2046-2069 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/877585/files/Invoice_INV_003436.pdf |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/877585/files/Invoice_INV_003436.pdf?subformat=pdfa |x pdfa |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/877585/files/publ_self%20assembled%201.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/877585/files/publ_self%20assembled%201.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:877585 |p openaire |p open_access |p OpenAPC |p driver |p VDB:MLZ |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)169176 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130754 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130577 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)130928 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)161101 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)130572 |
| 913 | 1 | _ | |a DE-HGF |b Energie |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-144 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Controlling Collective States |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-524 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Controlling Collective States |x 1 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-621 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |4 G:(DE-HGF)POF |v In-house research on the structure, dynamics and function of matter |9 G:(DE-HGF)POF3-6212 |x 2 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-621 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |4 G:(DE-HGF)POF |v In-house research on the structure, dynamics and function of matter |9 G:(DE-HGF)POF3-6213 |x 3 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-623 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |4 G:(DE-HGF)POF |v Facility topic: Neutrons for Research on Condensed Matter |9 G:(DE-HGF)POF3-6G4 |x 4 |
| 913 | 2 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-16 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b RSC ADV : 2018 |d 2020-01-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2020-01-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2020-01-16 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-16 |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 3.0 |0 LIC:(DE-HGF)CCBYNC3 |2 HGFVOC |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2020-01-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-16 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-16 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2020-01-16 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |f 2020-01-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-01-16 |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2020-01-16 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-16 |
| 920 | 1 | _ | |0 I:(DE-Juel1)JCNS-2-20110106 |k JCNS-2 |l Streumethoden |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-4-20110106 |k PGI-4 |l Streumethoden |x 1 |
| 920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBI-4-20200312 |k IBI-4 |l Biomakromolekulare Systeme und Prozesse |x 3 |
| 920 | 1 | _ | |0 I:(DE-Juel1)JCNS-HBS-20180709 |k JCNS-HBS |l High Brilliance Source |x 4 |
| 920 | 1 | _ | |0 I:(DE-Juel1)JCNS-FRM-II-20110218 |k JCNS-FRM-II |l JCNS-FRM-II |x 5 |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)JCNS-2-20110106 |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-4-20110106 |
| 980 | _ | _ | |a I:(DE-82)080009_20140620 |
| 980 | _ | _ | |a I:(DE-Juel1)IBI-4-20200312 |
| 980 | _ | _ | |a I:(DE-Juel1)JCNS-HBS-20180709 |
| 980 | _ | _ | |a I:(DE-Juel1)JCNS-FRM-II-20110218 |
| 980 | _ | _ | |a APC |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)JCNS-2-20110106 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|