000877638 001__ 877638
000877638 005__ 20240712113053.0
000877638 0247_ $$2doi$$a10.1039/D0GC01009J
000877638 0247_ $$2ISSN$$a1463-9262
000877638 0247_ $$2ISSN$$a1463-9270
000877638 0247_ $$2Handle$$a2128/25492
000877638 0247_ $$2altmetric$$aaltmetric:85317607
000877638 0247_ $$2WOS$$aWOS:000555342200011
000877638 037__ $$aFZJ-2020-02353
000877638 082__ $$a540
000877638 1001_ $$0P:(DE-Juel1)176118$$aYe, Ruijie$$b0$$ufzj
000877638 245__ $$aWater-based fabrication of garnet-based solid electrolyte separators for solid-state lithium batteries
000877638 260__ $$aCambridge$$bRSC$$c2020
000877638 3367_ $$2DRIVER$$aarticle
000877638 3367_ $$2DataCite$$aOutput Types/Journal article
000877638 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1597325192_14188
000877638 3367_ $$2BibTeX$$aARTICLE
000877638 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877638 3367_ $$00$$2EndNote$$aJournal Article
000877638 520__ $$aGarnet-type Li7La3Zr2O12 (LLZ) is regarded as a promising oxide-based solid electrolyte (SE) for solid-state lithium batteries (SSLBs) or other advanced Li-battery concepts like Li–air or Li–S batteries. A thin free-standing LLZ sheet can be fabricated by tape-casting and used e.g. as separators in SSLBs, since tape casting is an industrially established process and enables large-scale production of such SEs. However, organic solvents and additives employed in conventional slurry recipes for tape-casting give rise to health and safety concerns and also cause a high cost for solvent recovery. Hence, development of a green, water-based processing route can reduce both manufacturing costs and environmental footprint. In this work, we developed a tape-casting process for LLZ SEs using water as solvent, the water-soluble biopolymer methylcellulose as binder and other eco-friendly polymers as plasticizers. Although a Li+/H+ exchange takes place during our procedure, we demonstrate that the Li+/H+ exchange reaction is reversible in our procedure and results in the formation of stoichiometric cubic LLZ at the end. The obtained free-standing LLZ sheets with thickness of 150 μm and relative density of approx. 90% offer an ionic conductivity of 0.15 mS cm−1 at room temperature. We thereby prove that it is feasible to use water as dispersion medium and eco-friendly polymer additives for the fabrication of thin garnet-based SE layers.
000877638 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000877638 588__ $$aDataset connected to CrossRef
000877638 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b1
000877638 7001_ $$0P:(DE-Juel1)174298$$aIhrig, Martin$$b2$$ufzj
000877638 7001_ $$0P:(DE-Juel1)176429$$aSevinc, Serkan$$b3$$ufzj
000877638 7001_ $$0P:(DE-Juel1)173936$$aRosen, Melanie$$b4$$ufzj
000877638 7001_ $$0P:(DE-Juel1)156509$$aDashjav, Enkhtsetseg$$b5$$ufzj
000877638 7001_ $$0P:(DE-Juel1)159368$$aSohn, Yoo Jung$$b6$$ufzj
000877638 7001_ $$0P:(DE-Juel1)165182$$aFiggemeier, Egbert$$b7$$eCorresponding author$$ufzj
000877638 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b8$$eCorresponding author
000877638 773__ $$0PERI:(DE-600)2006274-6$$a10.1039/D0GC01009J$$gp. 10.1039.D0GC01009J$$n15$$p4952-4961$$tGreen chemistry$$v22$$x1463-9262$$y2020
000877638 8564_ $$uhttps://juser.fz-juelich.de/record/877638/files/Invoice_INV_004419.pdf
000877638 8564_ $$uhttps://juser.fz-juelich.de/record/877638/files/Invoice_INV_004419.pdf?subformat=pdfa$$xpdfa
000877638 8564_ $$uhttps://juser.fz-juelich.de/record/877638/files/d0gc01009j.pdf$$yOpenAccess
000877638 8564_ $$uhttps://juser.fz-juelich.de/record/877638/files/d0gc01009j.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877638 8767_ $$8INV_004419$$92020-06-19$$d2020-06-23$$eHybrid-OA$$jZahlung erfolgt$$zBelegnr. 1200154170, GBP 1600,-
000877638 909CO $$ooai:juser.fz-juelich.de:877638$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000877638 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176118$$aForschungszentrum Jülich$$b0$$kFZJ
000877638 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich$$b1$$kFZJ
000877638 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174298$$aForschungszentrum Jülich$$b2$$kFZJ
000877638 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176429$$aForschungszentrum Jülich$$b3$$kFZJ
000877638 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173936$$aForschungszentrum Jülich$$b4$$kFZJ
000877638 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156509$$aForschungszentrum Jülich$$b5$$kFZJ
000877638 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159368$$aForschungszentrum Jülich$$b6$$kFZJ
000877638 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165182$$aForschungszentrum Jülich$$b7$$kFZJ
000877638 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b8$$kFZJ
000877638 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000877638 9141_ $$y2020
000877638 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-02
000877638 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-02
000877638 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-02
000877638 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGREEN CHEM : 2018$$d2020-01-02
000877638 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGREEN CHEM : 2018$$d2020-01-02
000877638 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-02
000877638 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-02
000877638 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-02
000877638 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-02
000877638 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000877638 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877638 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2020-01-02$$wger
000877638 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-02
000877638 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2020-01-02
000877638 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-02
000877638 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-02$$wger
000877638 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-02
000877638 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-02$$wger
000877638 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-02
000877638 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000877638 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x1
000877638 9801_ $$aAPC
000877638 9801_ $$aFullTexts
000877638 980__ $$ajournal
000877638 980__ $$aVDB
000877638 980__ $$aUNRESTRICTED
000877638 980__ $$aI:(DE-Juel1)IEK-12-20141217
000877638 980__ $$aI:(DE-Juel1)IEK-1-20101013
000877638 980__ $$aAPC
000877638 981__ $$aI:(DE-Juel1)IMD-4-20141217
000877638 981__ $$aI:(DE-Juel1)IMD-2-20101013