000877723 001__ 877723
000877723 005__ 20210130005230.0
000877723 0247_ $$2doi$$a10.1021/acs.nanolett.8b01303
000877723 0247_ $$2ISSN$$a1530-6984
000877723 0247_ $$2ISSN$$a1530-6992
000877723 0247_ $$2altmetric$$aaltmetric:35006143
000877723 0247_ $$2pmid$$apmid:29949375
000877723 0247_ $$2Handle$$a2128/25349
000877723 0247_ $$2WOS$$aWOS:000441478300023
000877723 037__ $$aFZJ-2020-02424
000877723 082__ $$a660
000877723 1001_ $$0P:(DE-HGF)0$$aBanszerus, L.$$b0$$eCorresponding author
000877723 245__ $$aGate-Defined Electron–Hole Double Dots in Bilayer Graphene
000877723 260__ $$aWashington, DC$$bACS Publ.$$c2018
000877723 3367_ $$2DRIVER$$aarticle
000877723 3367_ $$2DataCite$$aOutput Types/Journal article
000877723 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1593167320_13095
000877723 3367_ $$2BibTeX$$aARTICLE
000877723 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877723 3367_ $$00$$2EndNote$$aJournal Article
000877723 520__ $$aWe present gate-controlled single-, double-, and triple-dot operation in electrostatically gapped bilayer graphene. Thanks to the recent advancements in sample fabrication, which include the encapsulation of bilayer graphene in hexagonal boron nitride and the use of graphite gates, it has become possible to electrostatically confine carriers in bilayer graphene and to completely pinch-off current through quantum dot devices. Here, we discuss the operation and characterization of electron–hole double dots. We show a remarkable degree of control of our device, which allows the implementation of two different gate-defined electron–hole double-dot systems with very similar energy scales. In the single-dot regime, we extract excited state energies and investigate their evolution in a parallel magnetic field, which is in agreement with a Zeeman-spin-splitting expected for a g-factor of 2.
000877723 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000877723 588__ $$aDataset connected to CrossRef
000877723 7001_ $$0P:(DE-HGF)0$$aFrohn, B.$$b1
000877723 7001_ $$0P:(DE-HGF)0$$aEpping, A.$$b2
000877723 7001_ $$0P:(DE-HGF)0$$aNeumaier, D.$$b3
000877723 7001_ $$0P:(DE-HGF)0$$aWatanabe, K.$$b4
000877723 7001_ $$0P:(DE-HGF)0$$aTaniguchi, T.$$b5
000877723 7001_ $$0P:(DE-Juel1)180322$$aStampfer, Christoph$$b6$$ufzj
000877723 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.8b01303$$gVol. 18, no. 8, p. 4785 - 4790$$n8$$p4785 - 4790$$tNano letters$$v18$$x1530-6992$$y2018
000877723 8564_ $$uhttps://juser.fz-juelich.de/record/877723/files/acs.nanolett.8b01303-1.pdf
000877723 8564_ $$uhttps://juser.fz-juelich.de/record/877723/files/1803.10857.pdf$$yPublished on 2018-06-27. Available in OpenAccess from 2019-06-27.
000877723 8564_ $$uhttps://juser.fz-juelich.de/record/877723/files/acs.nanolett.8b01303-1.pdf?subformat=pdfa$$xpdfa
000877723 8564_ $$uhttps://juser.fz-juelich.de/record/877723/files/1803.10857.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-06-27. Available in OpenAccess from 2019-06-27.
000877723 909CO $$ooai:juser.fz-juelich.de:877723$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877723 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000877723 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
000877723 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000877723 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
000877723 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000877723 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000877723 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180322$$aForschungszentrum Jülich$$b6$$kFZJ
000877723 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180322$$aRWTH Aachen$$b6$$kRWTH
000877723 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000877723 9141_ $$y2020
000877723 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-06
000877723 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-06
000877723 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-06
000877723 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877723 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-06
000877723 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2018$$d2020-01-06
000877723 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-06
000877723 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-06
000877723 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-06
000877723 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-06
000877723 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2018$$d2020-01-06
000877723 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-06
000877723 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-06
000877723 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-06
000877723 920__ $$lyes
000877723 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000877723 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000877723 980__ $$ajournal
000877723 980__ $$aVDB
000877723 980__ $$aUNRESTRICTED
000877723 980__ $$aI:(DE-Juel1)PGI-9-20110106
000877723 980__ $$aI:(DE-82)080009_20140620
000877723 9801_ $$aFullTexts