001     877723
005     20210130005230.0
024 7 _ |a 10.1021/acs.nanolett.8b01303
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a altmetric:35006143
|2 altmetric
024 7 _ |a pmid:29949375
|2 pmid
024 7 _ |a 2128/25349
|2 Handle
024 7 _ |a WOS:000441478300023
|2 WOS
037 _ _ |a FZJ-2020-02424
082 _ _ |a 660
100 1 _ |a Banszerus, L.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Gate-Defined Electron–Hole Double Dots in Bilayer Graphene
260 _ _ |a Washington, DC
|c 2018
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1593167320_13095
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present gate-controlled single-, double-, and triple-dot operation in electrostatically gapped bilayer graphene. Thanks to the recent advancements in sample fabrication, which include the encapsulation of bilayer graphene in hexagonal boron nitride and the use of graphite gates, it has become possible to electrostatically confine carriers in bilayer graphene and to completely pinch-off current through quantum dot devices. Here, we discuss the operation and characterization of electron–hole double dots. We show a remarkable degree of control of our device, which allows the implementation of two different gate-defined electron–hole double-dot systems with very similar energy scales. In the single-dot regime, we extract excited state energies and investigate their evolution in a parallel magnetic field, which is in agreement with a Zeeman-spin-splitting expected for a g-factor of 2.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Frohn, B.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Epping, A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Neumaier, D.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Watanabe, K.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Taniguchi, T.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Stampfer, Christoph
|0 P:(DE-Juel1)180322
|b 6
|u fzj
773 _ _ |a 10.1021/acs.nanolett.8b01303
|g Vol. 18, no. 8, p. 4785 - 4790
|0 PERI:(DE-600)2048866-X
|n 8
|p 4785 - 4790
|t Nano letters
|v 18
|y 2018
|x 1530-6992
856 4 _ |u https://juser.fz-juelich.de/record/877723/files/acs.nanolett.8b01303-1.pdf
856 4 _ |y Published on 2018-06-27. Available in OpenAccess from 2019-06-27.
|u https://juser.fz-juelich.de/record/877723/files/1803.10857.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/877723/files/acs.nanolett.8b01303-1.pdf?subformat=pdfa
856 4 _ |y Published on 2018-06-27. Available in OpenAccess from 2019-06-27.
|x pdfa
|u https://juser.fz-juelich.de/record/877723/files/1803.10857.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877723
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)180322
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)180322
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-06
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-06
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2018
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2018
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-06
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21