000877751 001__ 877751
000877751 005__ 20210130005237.0
000877751 0247_ $$2doi$$a10.1002/pssr.201700136
000877751 0247_ $$2ISSN$$a1862-6254
000877751 0247_ $$2ISSN$$a1862-6270
000877751 0247_ $$2Handle$$a2128/25201
000877751 0247_ $$2altmetric$$aaltmetric:20820895
000877751 0247_ $$2WOS$$aWOS:000405997200001
000877751 037__ $$aFZJ-2020-02439
000877751 082__ $$a530
000877751 1001_ $$0P:(DE-HGF)0$$aBanszerus, Luca$$b0
000877751 245__ $$aDry transfer of CVD graphene using MoS 2 -based stamps
000877751 260__ $$aWeinheim$$bWiley-VCH$$c2017
000877751 3367_ $$2DRIVER$$aarticle
000877751 3367_ $$2DataCite$$aOutput Types/Journal article
000877751 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1593524611_1666
000877751 3367_ $$2BibTeX$$aARTICLE
000877751 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877751 3367_ $$00$$2EndNote$$aJournal Article
000877751 520__ $$aRecently, a contamination‐free dry transfer method for graphene grown by chemical vapor deposition (CVD) has been reported that allows to directly pick‐up graphene from the copper growth substrate using a flake of hexagonal boron nitride (hBN), resulting in ultrahigh charge carrier mobility and low overall doping. Here, we report that not only hBN, but also flakes of molybdenum disulfide (MoS2) can be used to dry transfer graphene. This, on one hand, allows for the fabrication of complex van‐der‐Waals heterostructures using CVD graphene combined with different two‐dimensional materials and, on the other hand, can be a route toward a scalable dry transfer of CVD graphene. The resulting heterostructures are studied using low temperature transport measurements revealing a strong charge carrier density dependence of the carrier mobilities (up to values of 12,000 cm2/(Vs)) and the residual charge carrier density fluctuations near the charge neutrality point when changing the carrier density in the MoS2 by applying a top gate voltage.
000877751 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000877751 588__ $$aDataset connected to CrossRef
000877751 7001_ $$0P:(DE-HGF)0$$aWatanabe, Kenji$$b1
000877751 7001_ $$0P:(DE-HGF)0$$aTaniguchi, Takashi$$b2
000877751 7001_ $$0P:(DE-Juel1)178028$$aBeschoten, Bernd$$b3$$ufzj
000877751 7001_ $$0P:(DE-Juel1)180322$$aStampfer, Christoph$$b4$$eCorresponding author$$ufzj
000877751 773__ $$0PERI:(DE-600)2259465-6$$a10.1002/pssr.201700136$$gVol. 11, no. 7, p. 1700136 -$$n7$$p1700136 -$$tPhysica status solidi / Rapid research letters Rapid research letters$$v11$$x1862-6254$$y2017
000877751 8564_ $$uhttps://juser.fz-juelich.de/record/877751/files/pssr.201700136.pdf
000877751 8564_ $$uhttps://juser.fz-juelich.de/record/877751/files/1706.00422.pdf$$yPublished on 2017-06-14. Available in OpenAccess from 2018-06-14.
000877751 8564_ $$uhttps://juser.fz-juelich.de/record/877751/files/pssr.201700136.pdf?subformat=pdfa$$xpdfa
000877751 8564_ $$uhttps://juser.fz-juelich.de/record/877751/files/1706.00422.pdf?subformat=pdfa$$xpdfa$$yPublished on 2017-06-14. Available in OpenAccess from 2018-06-14.
000877751 909CO $$ooai:juser.fz-juelich.de:877751$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877751 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000877751 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178028$$aForschungszentrum Jülich$$b3$$kFZJ
000877751 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)178028$$aRWTH Aachen$$b3$$kRWTH
000877751 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180322$$aForschungszentrum Jülich$$b4$$kFZJ
000877751 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180322$$aRWTH Aachen$$b4$$kRWTH
000877751 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000877751 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27
000877751 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27
000877751 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-27
000877751 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877751 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS STATUS SOLIDI-R : 2018$$d2020-02-27
000877751 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-27$$wger
000877751 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27
000877751 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-27
000877751 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27
000877751 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-27
000877751 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-27
000877751 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-27
000877751 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000877751 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27
000877751 920__ $$lyes
000877751 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000877751 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000877751 980__ $$ajournal
000877751 980__ $$aVDB
000877751 980__ $$aUNRESTRICTED
000877751 980__ $$aI:(DE-Juel1)PGI-9-20110106
000877751 980__ $$aI:(DE-82)080009_20140620
000877751 9801_ $$aFullTexts