001     877751
005     20210130005237.0
024 7 _ |a 10.1002/pssr.201700136
|2 doi
024 7 _ |a 1862-6254
|2 ISSN
024 7 _ |a 1862-6270
|2 ISSN
024 7 _ |a 2128/25201
|2 Handle
024 7 _ |a altmetric:20820895
|2 altmetric
024 7 _ |a WOS:000405997200001
|2 WOS
037 _ _ |a FZJ-2020-02439
082 _ _ |a 530
100 1 _ |a Banszerus, Luca
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Dry transfer of CVD graphene using MoS 2 -based stamps
260 _ _ |a Weinheim
|c 2017
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1593524611_1666
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Recently, a contamination‐free dry transfer method for graphene grown by chemical vapor deposition (CVD) has been reported that allows to directly pick‐up graphene from the copper growth substrate using a flake of hexagonal boron nitride (hBN), resulting in ultrahigh charge carrier mobility and low overall doping. Here, we report that not only hBN, but also flakes of molybdenum disulfide (MoS2) can be used to dry transfer graphene. This, on one hand, allows for the fabrication of complex van‐der‐Waals heterostructures using CVD graphene combined with different two‐dimensional materials and, on the other hand, can be a route toward a scalable dry transfer of CVD graphene. The resulting heterostructures are studied using low temperature transport measurements revealing a strong charge carrier density dependence of the carrier mobilities (up to values of 12,000 cm2/(Vs)) and the residual charge carrier density fluctuations near the charge neutrality point when changing the carrier density in the MoS2 by applying a top gate voltage.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Watanabe, Kenji
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Taniguchi, Takashi
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Beschoten, Bernd
|0 P:(DE-Juel1)178028
|b 3
|u fzj
700 1 _ |a Stampfer, Christoph
|0 P:(DE-Juel1)180322
|b 4
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/pssr.201700136
|g Vol. 11, no. 7, p. 1700136 -
|0 PERI:(DE-600)2259465-6
|n 7
|p 1700136 -
|t Physica status solidi / Rapid research letters Rapid research letters
|v 11
|y 2017
|x 1862-6254
856 4 _ |u https://juser.fz-juelich.de/record/877751/files/pssr.201700136.pdf
856 4 _ |y Published on 2017-06-14. Available in OpenAccess from 2018-06-14.
|u https://juser.fz-juelich.de/record/877751/files/1706.00422.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/877751/files/pssr.201700136.pdf?subformat=pdfa
856 4 _ |y Published on 2017-06-14. Available in OpenAccess from 2018-06-14.
|x pdfa
|u https://juser.fz-juelich.de/record/877751/files/1706.00422.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877751
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)178028
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)178028
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)180322
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)180322
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-02-27
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS STATUS SOLIDI-R : 2018
|d 2020-02-27
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-02-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-02-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21