000877780 001__ 877780
000877780 005__ 20240610121211.0
000877780 0247_ $$2doi$$a10.1140/epja/s10050-020-00185-x
000877780 0247_ $$2Handle$$a2128/26247
000877780 0247_ $$2altmetric$$aaltmetric:77734261
000877780 0247_ $$2WOS$$aWOS:000554795600001
000877780 037__ $$aFZJ-2020-02447
000877780 082__ $$a530
000877780 1001_ $$0P:(DE-Juel1)131179$$aHaidenbauer, Johann$$b0$$eCorresponding author
000877780 245__ $$aPredictions for charmed nuclei based on $Y_c N$ forces inferred from lattice QCD simulations
000877780 260__ $$aHeidelberg$$bSpringer$$c2020
000877780 3367_ $$2DRIVER$$aarticle
000877780 3367_ $$2DataCite$$aOutput Types/Journal article
000877780 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617693762_21066
000877780 3367_ $$2BibTeX$$aARTICLE
000877780 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877780 3367_ $$00$$2EndNote$$aJournal Article
000877780 520__ $$aCharmed nuclei are investigated utilizing ΛcN and ΣcN interactions that have been extrapolated from lattice QCD simulations at unphysical masses of mπ=410–570 MeV to the physical point using chiral effective field theory as guideline. Calculations of the energies of Λc single-particle bound states for various charmed nuclei from 5ΛcLi to 209ΛcBi are performed using a perturbative many-body approach. This approach allows one to determine the finite nuclei Λc self-energy from which the energies of the different bound states can be obtained. Though the ΛcN interaction inferred from the lattice results is only moderately attractive, it supports the existence of charmed nuclei. Already the lightest nucleus considered is found to be bound. The spin-orbit splitting of the p- and d-wave states turns out to be small, as in the case of single Λ hypernuclei. Additional calculations based on the Faddeev-Yakubovsky equations suggest that also A=4 systems involving a Λc baryon are likely to be bound, but exclude a bound 3ΛcHe state.
000877780 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000877780 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1
000877780 536__ $$0G:(DE-Juel1)jikp03_20190501$$aChiral dynamics in Few-Baryon Systems (jikp03_20190501)$$cjikp03_20190501$$fChiral dynamics in Few-Baryon Systems$$x2
000877780 588__ $$aDataset connected to CrossRef
000877780 7001_ $$0P:(DE-Juel1)131273$$aNogga, Andreas$$b1
000877780 7001_ $$0P:(DE-HGF)0$$aVidaña, Isaac$$b2
000877780 773__ $$0PERI:(DE-600)1459066-9$$a10.1140/epja/s10050-020-00185-x$$gVol. 56, no. 7, p. 195$$n7$$p195$$tThe European physical journal / A$$v56$$x0939-7922$$y2020
000877780 8564_ $$uhttps://juser.fz-juelich.de/record/877780/files/Haidenbauer2020_Article_PredictionsForCharmedNucleiBas.pdf$$yOpenAccess
000877780 8564_ $$uhttps://juser.fz-juelich.de/record/877780/files/Haidenbauer2020_Article_PredictionsForCharmedNucleiBas.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877780 8767_ $$d2020-07-01$$eHybrid-OA$$jDEAL$$lDEAL: Springer$$pEPJA-105614.R1$$zapproved im dashboard
000877780 909CO $$ooai:juser.fz-juelich.de:877780$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000877780 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131179$$aForschungszentrum Jülich$$b0$$kFZJ
000877780 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131273$$aForschungszentrum Jülich$$b1$$kFZJ
000877780 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000877780 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877780 9141_ $$y2020
000877780 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27
000877780 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27
000877780 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877780 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-27
000877780 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J A : 2018$$d2020-02-27
000877780 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27
000877780 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-27
000877780 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2020-02-27$$wger
000877780 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-27
000877780 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877780 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-27
000877780 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-27
000877780 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27
000877780 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-02-27$$wger
000877780 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27
000877780 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000877780 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1
000877780 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000877780 9801_ $$aAPC
000877780 9801_ $$aFullTexts
000877780 980__ $$ajournal
000877780 980__ $$aVDB
000877780 980__ $$aI:(DE-Juel1)IAS-4-20090406
000877780 980__ $$aI:(DE-Juel1)IKP-3-20111104
000877780 980__ $$aI:(DE-82)080012_20140620
000877780 980__ $$aAPC
000877780 980__ $$aUNRESTRICTED
000877780 981__ $$aI:(DE-Juel1)IAS-4-20090406