000877782 001__ 877782
000877782 005__ 20240712101026.0
000877782 0247_ $$2doi$$a10.5194/acp-20-6671-2020
000877782 0247_ $$2ISSN$$a1680-7316
000877782 0247_ $$2ISSN$$a1680-7324
000877782 0247_ $$2Handle$$a2128/27321
000877782 0247_ $$2altmetric$$aaltmetric:83473655
000877782 0247_ $$2WOS$$aWOS:000538775000001
000877782 037__ $$aFZJ-2020-02449
000877782 082__ $$a550
000877782 1001_ $$0P:(DE-Juel1)173788$$aRosanka, Simon$$b0
000877782 245__ $$aAtmospheric chemical loss processes of isocyanic acid (HNCO): a combined theoretical kinetic and global modelling study
000877782 260__ $$aKatlenburg-Lindau$$bEGU$$c2020
000877782 3367_ $$2DRIVER$$aarticle
000877782 3367_ $$2DataCite$$aOutput Types/Journal article
000877782 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619337835_9735
000877782 3367_ $$2BibTeX$$aARTICLE
000877782 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877782 3367_ $$00$$2EndNote$$aJournal Article
000877782 520__ $$aIsocyanic acid (HNCO) is a chemical constituent suspected to be harmful to humans if ambient concentrations exceed ∼1 ppbv. HNCO is mainly emitted by combustion processes but is also inadvertently released by NOx mitigation measures in flue gas treatments. With increasing biomass burning and more widespread usage of catalytic converters in car engines, good prediction of HNCO atmospheric levels with global models is desirable. Little is known directly about the chemical loss processes of HNCO, which limits the implementation in global Earth system models. This study aims to close this knowledge gap by combining a theoretical kinetic study on the major oxidants reacting with HNCO with a global modelling study. The potential energy surfaces of the reactions of HNCO with OH and NO3 radicals, Cl atoms, and ozone were studied using high-level CCSD(T)/CBS(DTQ)//M06-2X/aug-cc-pVTZ quantum chemical methodologies, followed by transition state theory (TST) theoretical kinetic predictions of the rate coefficients at temperatures of 200–3000 K. It was found that the reactions are all slow in atmospheric conditions, with k(300K)≤7×10−16 cm3molecule−1s−1, and that product formation occurs predominantly by H abstraction; the predictions are in good agreement with earlier experimental work, where available. The reverse reactions of NCO radicals with H2O, HNO3, and HCl, of importance mostly in combustion, were also examined briefly.The findings are implemented into the atmospheric model EMAC (ECHAM/MESSy Atmospheric Chemistry) to estimate the importance of each chemical loss process on a global scale. The EMAC predictions confirm that the gas-phase chemical loss of HNCO is a negligible process, contributing less than 1 % and leaving heterogeneous losses as the major sinks. The removal of HNCO by clouds and precipitation contributes about 10 % of the total loss, while globally dry deposition is the main sink, accounting for ∼90 %. The global simulation also shows that due to its long chemical lifetime in the free troposphere, HNCO can be efficiently transported into the UTLS by deep convection events. Daily-average mixing ratios of ground-level HNCO are found to regularly exceed 1 ppbv in regions dominated by biomass burning events, but rarely exceed levels above 10 ppt in other areas of the troposphere, though locally instantaneous toxic levels are expected.
000877782 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000877782 536__ $$0G:(DE-Juel1)jiek81_20190501$$aFRONTier simulations of AIR composition evolution (FRONTAIR) (jiek81_20190501)$$cjiek81_20190501$$fFRONTier simulations of AIR composition evolution (FRONTAIR)$$x1
000877782 588__ $$aDataset connected to CrossRef
000877782 7001_ $$00000-0003-0984-9601$$aVu, Giang H. T.$$b1
000877782 7001_ $$0P:(DE-HGF)0$$aNguyen, Hue M. T.$$b2$$eCorresponding author
000877782 7001_ $$00000-0002-2067-9028$$aPham, Tien V.$$b3
000877782 7001_ $$0P:(DE-Juel1)173894$$aJaved, Umar$$b4$$ufzj
000877782 7001_ $$0P:(DE-Juel1)167439$$aTaraborrelli, Domenico$$b5$$eCorresponding author
000877782 7001_ $$0P:(DE-Juel1)167140$$aVereecken, Luc$$b6
000877782 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-20-6671-2020$$gVol. 20, no. 11, p. 6671 - 6686$$n11$$p6671 - 6686$$tAtmospheric chemistry and physics$$v20$$x1680-7324$$y2020
000877782 8564_ $$uhttps://juser.fz-juelich.de/record/877782/files/invoice_Helmholtz-PUC-2020-56.pdf
000877782 8564_ $$uhttps://juser.fz-juelich.de/record/877782/files/acp-20-6671-2020.pdf$$yOpenAccess
000877782 8564_ $$uhttps://juser.fz-juelich.de/record/877782/files/invoice_Helmholtz-PUC-2020-56.pdf?subformat=pdfa$$xpdfa
000877782 8564_ $$uhttps://juser.fz-juelich.de/record/877782/files/acp-20-6671-2020.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877782 8767_ $$8Helmholtz-PUC-2020-56$$92020-07-01$$d2020-07-02$$eAPC$$jZahlung erfolgt$$pacp-2019-1138$$zBelegnr. 1200154509
000877782 909CO $$ooai:juser.fz-juelich.de:877782$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000877782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173788$$aForschungszentrum Jülich$$b0$$kFZJ
000877782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173894$$aForschungszentrum Jülich$$b4$$kFZJ
000877782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167439$$aForschungszentrum Jülich$$b5$$kFZJ
000877782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167140$$aForschungszentrum Jülich$$b6$$kFZJ
000877782 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000877782 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877782 9141_ $$y2020
000877782 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-18
000877782 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-18
000877782 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877782 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2018$$d2020-01-18
000877782 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2018$$d2020-01-18
000877782 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-18
000877782 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-18
000877782 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-18
000877782 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-18
000877782 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-18
000877782 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-18
000877782 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877782 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-01-18
000877782 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-18
000877782 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-18
000877782 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-18
000877782 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-18
000877782 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-18
000877782 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000877782 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000877782 9801_ $$aAPC
000877782 9801_ $$aFullTexts
000877782 980__ $$ajournal
000877782 980__ $$aVDB
000877782 980__ $$aI:(DE-Juel1)IEK-8-20101013
000877782 980__ $$aI:(DE-82)080012_20140620
000877782 980__ $$aAPC
000877782 980__ $$aUNRESTRICTED
000877782 981__ $$aI:(DE-Juel1)ICE-3-20101013