000877852 001__ 877852
000877852 005__ 20240712084520.0
000877852 0247_ $$2doi$$a10.1515/zpch-2019-1481
000877852 0247_ $$2ISSN$$a0044-3336
000877852 0247_ $$2ISSN$$a0372-8501
000877852 0247_ $$2ISSN$$a0372-9656
000877852 0247_ $$2ISSN$$a0372-9664
000877852 0247_ $$2ISSN$$a0942-9352
000877852 0247_ $$2ISSN$$a2196-7156
000877852 0247_ $$2WOS$$aWOS:000542554000007
000877852 037__ $$aFZJ-2020-02476
000877852 082__ $$a540
000877852 1001_ $$0P:(DE-HGF)0$$aRonge, Emanuel$$b0
000877852 245__ $$aStability and Degradation Mechanism of Si-based Photocathodes for Water Splitting with Ultrathin TiO2 Protection Layer
000877852 260__ $$aBerlin$$bDe Gruyter$$c2020
000877852 3367_ $$2DRIVER$$aarticle
000877852 3367_ $$2DataCite$$aOutput Types/Journal article
000877852 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1603279710_9739
000877852 3367_ $$2BibTeX$$aARTICLE
000877852 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877852 3367_ $$00$$2EndNote$$aJournal Article
000877852 520__ $$aUsing transmission and scanning electron microscopy, we study mechanisms which determine the stability of Silicon photocathodes for solar driven water splitting. Such tandem or triple devices can show a promising stability as photocathodes if the semiconductor surface is protected by an ultrathin TiO2 protection layer. Using atomic layer deposition (ALD) with Cl-precursors, 4–7 nm thick TiO2 layers can be grown with high structural perfection. The layer can be electrochemically covered by Pt nanoparticels serving as electro-catalysts. However, Cl-remnants which are typically present in such layers due to incomplete oxidation, are the origin of an electrochemical degradation process. After 1 h AM1.5G illumination in alkaline media, circular shaped corrosion craters appear in the topmost Si layer, although the TiO2 layer is intact in most parts of the crater. The crater development is stopped at local inhomogenities with a higher Pt coverage. The observations suggests that reduced Titanium species due to Cl−/O2− substitution are nucleation sites of the initial corrosion steps due to enhanced solubility of reduced Ti in the electrolyte. This process is followed by electrochemical dissolution of Si, after direct contact between the electrolyte and the top Si layer surface. To increase the stability of TiO2 protected photocathodes, formation of reduced Ti species must be avoided.
000877852 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000877852 588__ $$aDataset connected to CrossRef
000877852 7001_ $$0P:(DE-HGF)0$$aCottre, Thorsten$$b1
000877852 7001_ $$0P:(DE-Juel1)167359$$aWelter, Katharina$$b2
000877852 7001_ $$0P:(DE-Juel1)130297$$aSmirnov, Vladimir$$b3
000877852 7001_ $$0P:(DE-HGF)0$$aOttinger, Natalie Jacqueline$$b4
000877852 7001_ $$0P:(DE-Juel1)130238$$aFinger, Friedhelm$$b5
000877852 7001_ $$0P:(DE-HGF)0$$aKaiser, Bernhard$$b6
000877852 7001_ $$0P:(DE-HGF)0$$aJaegermann, Wolfram$$b7
000877852 7001_ $$0P:(DE-HGF)0$$aJooss, Christian$$b8$$eCorresponding author
000877852 773__ $$0PERI:(DE-600)2020854-6$$a10.1515/zpch-2019-1481$$gVol. 0, no. 0$$n6$$p1171–1184$$tZeitschrift für physikalische Chemie$$v234$$x2196-7156$$y2020
000877852 8564_ $$uhttps://juser.fz-juelich.de/record/877852/files/Cottre%20et%20al_.pdf$$yRestricted
000877852 8564_ $$uhttps://juser.fz-juelich.de/record/877852/files/Cottre%20et%20al_.pdf?subformat=pdfa$$xpdfa$$yRestricted
000877852 909CO $$ooai:juser.fz-juelich.de:877852$$pVDB
000877852 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167359$$aForschungszentrum Jülich$$b2$$kFZJ
000877852 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130297$$aForschungszentrum Jülich$$b3$$kFZJ
000877852 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130238$$aForschungszentrum Jülich$$b5$$kFZJ
000877852 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000877852 9141_ $$y2020
000877852 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bZ PHYS CHEM : 2018$$d2020-01-16
000877852 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000877852 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000877852 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000877852 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-16
000877852 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000877852 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000877852 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000877852 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-16
000877852 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-16
000877852 920__ $$lyes
000877852 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000877852 980__ $$ajournal
000877852 980__ $$aVDB
000877852 980__ $$aI:(DE-Juel1)IEK-5-20101013
000877852 980__ $$aUNRESTRICTED
000877852 981__ $$aI:(DE-Juel1)IMD-3-20101013