Journal Article FZJ-2020-02476

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Stability and Degradation Mechanism of Si-based Photocathodes for Water Splitting with Ultrathin TiO2 Protection Layer

 ;  ;  ;  ;  ;  ;  ;  ;

2020
˜Deœ Gruyter Berlin

Zeitschrift für physikalische Chemie 234(6), 1171–1184 () [10.1515/zpch-2019-1481]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Using transmission and scanning electron microscopy, we study mechanisms which determine the stability of Silicon photocathodes for solar driven water splitting. Such tandem or triple devices can show a promising stability as photocathodes if the semiconductor surface is protected by an ultrathin TiO2 protection layer. Using atomic layer deposition (ALD) with Cl-precursors, 4–7 nm thick TiO2 layers can be grown with high structural perfection. The layer can be electrochemically covered by Pt nanoparticels serving as electro-catalysts. However, Cl-remnants which are typically present in such layers due to incomplete oxidation, are the origin of an electrochemical degradation process. After 1 h AM1.5G illumination in alkaline media, circular shaped corrosion craters appear in the topmost Si layer, although the TiO2 layer is intact in most parts of the crater. The crater development is stopped at local inhomogenities with a higher Pt coverage. The observations suggests that reduced Titanium species due to Cl−/O2− substitution are nucleation sites of the initial corrosion steps due to enhanced solubility of reduced Ti in the electrolyte. This process is followed by electrochemical dissolution of Si, after direct contact between the electrolyte and the top Si layer surface. To increase the stability of TiO2 protected photocathodes, formation of reduced Ti species must be avoided.

Classification:

Contributing Institute(s):
  1. Photovoltaik (IEK-5)
Research Program(s):
  1. 121 - Solar cells of the next generation (POF3-121) (POF3-121)

Appears in the scientific report 2020
Database coverage:
Medline ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-3
Workflow collections > Public records
IEK > IEK-5
Publications database

 Record created 2020-07-03, last modified 2024-07-12


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)