001     877852
005     20240712084520.0
024 7 _ |a 10.1515/zpch-2019-1481
|2 doi
024 7 _ |a 0044-3336
|2 ISSN
024 7 _ |a 0372-8501
|2 ISSN
024 7 _ |a 0372-9656
|2 ISSN
024 7 _ |a 0372-9664
|2 ISSN
024 7 _ |a 0942-9352
|2 ISSN
024 7 _ |a 2196-7156
|2 ISSN
024 7 _ |a WOS:000542554000007
|2 WOS
037 _ _ |a FZJ-2020-02476
082 _ _ |a 540
100 1 _ |a Ronge, Emanuel
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Stability and Degradation Mechanism of Si-based Photocathodes for Water Splitting with Ultrathin TiO2 Protection Layer
260 _ _ |a Berlin
|c 2020
|b ˜Deœ Gruyter
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1603279710_9739
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Using transmission and scanning electron microscopy, we study mechanisms which determine the stability of Silicon photocathodes for solar driven water splitting. Such tandem or triple devices can show a promising stability as photocathodes if the semiconductor surface is protected by an ultrathin TiO2 protection layer. Using atomic layer deposition (ALD) with Cl-precursors, 4–7 nm thick TiO2 layers can be grown with high structural perfection. The layer can be electrochemically covered by Pt nanoparticels serving as electro-catalysts. However, Cl-remnants which are typically present in such layers due to incomplete oxidation, are the origin of an electrochemical degradation process. After 1 h AM1.5G illumination in alkaline media, circular shaped corrosion craters appear in the topmost Si layer, although the TiO2 layer is intact in most parts of the crater. The crater development is stopped at local inhomogenities with a higher Pt coverage. The observations suggests that reduced Titanium species due to Cl−/O2− substitution are nucleation sites of the initial corrosion steps due to enhanced solubility of reduced Ti in the electrolyte. This process is followed by electrochemical dissolution of Si, after direct contact between the electrolyte and the top Si layer surface. To increase the stability of TiO2 protected photocathodes, formation of reduced Ti species must be avoided.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Cottre, Thorsten
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Welter, Katharina
|0 P:(DE-Juel1)167359
|b 2
700 1 _ |a Smirnov, Vladimir
|0 P:(DE-Juel1)130297
|b 3
700 1 _ |a Ottinger, Natalie Jacqueline
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Finger, Friedhelm
|0 P:(DE-Juel1)130238
|b 5
700 1 _ |a Kaiser, Bernhard
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Jaegermann, Wolfram
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Jooss, Christian
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1515/zpch-2019-1481
|g Vol. 0, no. 0
|0 PERI:(DE-600)2020854-6
|n 6
|p 1171–1184
|t Zeitschrift für physikalische Chemie
|v 234
|y 2020
|x 2196-7156
856 4 _ |u https://juser.fz-juelich.de/record/877852/files/Cottre%20et%20al_.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/877852/files/Cottre%20et%20al_.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:877852
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)167359
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130297
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130238
913 1 _ |a DE-HGF
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b Z PHYS CHEM : 2018
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-16
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-16
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21