000877858 001__ 877858
000877858 005__ 20240711085641.0
000877858 0247_ $$2doi$$a10.1111/jace.17328
000877858 0247_ $$2ISSN$$a0002-7820
000877858 0247_ $$2ISSN$$a1551-2916
000877858 0247_ $$2Handle$$a2128/26029
000877858 0247_ $$2WOS$$aWOS:000545078100001
000877858 037__ $$aFZJ-2020-02479
000877858 082__ $$a660
000877858 1001_ $$0P:(DE-Juel1)173939$$aWolf, Markus$$b0$$eCorresponding author$$ufzj
000877858 245__ $$aResistance of pure and mixed rare earth silicates against calcium‐magnesium‐aluminosilicate (CMAS): A comparative study
000877858 260__ $$aWesterville, Ohio$$bSoc.$$c2020
000877858 3367_ $$2DRIVER$$aarticle
000877858 3367_ $$2DataCite$$aOutput Types/Journal article
000877858 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604395463_32573
000877858 3367_ $$2BibTeX$$aARTICLE
000877858 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877858 3367_ $$00$$2EndNote$$aJournal Article
000877858 520__ $$aRare earth silicate environmental barrier coatings (EBCs) are state of the art for protecting SiC ceramic matrix composites (CMCs) against corrosive media. The interaction of four pure rare earth silicate EBC materials Yb2SiO5, Yb2Si2O7, Y2SiO5, Y2Si2O7 and three ytterbium silicate mixtures with molten calcium‐magnesium‐aluminosilicate (CMAS) were studied at high temperature (1400°C). The samples were characterized by SEM and XRD in order to evaluate the recession of the different materials after a reaction time of 8 hours. Additionally, the coefficient of thermal expansion (CTE) was determined to evaluate the suitability of Yb silicate mixtures as EBC materials for SiC CMCs. Results show that monosilicates exhibit a lower recession in contact with CMAS than their disilicate counterparts. The recession of the ytterbium silicates is far lower than the recession of the yttrium silicates under CMAS attack. Investigation of the ytterbium silicate mixtures exposes their superior resistance to CMAS, which is even higher than the resistance of the pure monosilicate. Also their decreased CTE suggests they will display better performance than the pure monosilicate.
000877858 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000877858 588__ $$aDataset connected to CrossRef
000877858 7001_ $$0P:(DE-Juel1)129630$$aMack, Daniel Emil$$b1
000877858 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b2$$ufzj
000877858 7001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b3
000877858 773__ $$0PERI:(DE-600)2008170-4$$a10.1111/jace.17328$$gp. jace.17328$$n12$$p7056-7071$$tJournal of the American Ceramic Society$$v103$$x1551-2916$$y2020
000877858 8564_ $$uhttps://juser.fz-juelich.de/record/877858/files/jace.17328-1.pdf$$yOpenAccess
000877858 8564_ $$uhttps://juser.fz-juelich.de/record/877858/files/jace.17328-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877858 8767_ $$92020-06-22$$d2020-07-06$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$pJACERS-45414.R1
000877858 909CO $$ooai:juser.fz-juelich.de:877858$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000877858 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173939$$aForschungszentrum Jülich$$b0$$kFZJ
000877858 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129630$$aForschungszentrum Jülich$$b1$$kFZJ
000877858 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b2$$kFZJ
000877858 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b3$$kFZJ
000877858 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000877858 9141_ $$y2020
000877858 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000877858 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000877858 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-26
000877858 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877858 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-26
000877858 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CERAM SOC : 2018$$d2020-02-26
000877858 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000877858 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000877858 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26
000877858 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000877858 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26
000877858 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877858 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-26
000877858 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26
000877858 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000877858 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-02-26$$wger
000877858 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000877858 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000877858 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000877858 9801_ $$aAPC
000877858 9801_ $$aFullTexts
000877858 980__ $$ajournal
000877858 980__ $$aVDB
000877858 980__ $$aUNRESTRICTED
000877858 980__ $$aI:(DE-Juel1)IEK-1-20101013
000877858 980__ $$aI:(DE-82)080011_20140620
000877858 980__ $$aAPC
000877858 981__ $$aI:(DE-Juel1)IMD-2-20101013