000877866 001__ 877866
000877866 005__ 20240711085641.0
000877866 0247_ $$2doi$$a10.1111/jace.17323
000877866 0247_ $$2ISSN$$a0002-7820
000877866 0247_ $$2ISSN$$a1551-2916
000877866 0247_ $$2Handle$$a2128/27322
000877866 0247_ $$2WOS$$aWOS:000545427100001
000877866 037__ $$aFZJ-2020-02484
000877866 041__ $$aEnglish
000877866 082__ $$a660
000877866 1001_ $$0P:(DE-Juel1)171462$$aDash, Apurv$$b0$$eCorresponding author
000877866 245__ $$aCompressive creep of SiC whisker / Ti$_{3}$SiC$_{2}$ composites at high temperature in air
000877866 260__ $$aWesterville, Ohio$$bSoc.$$c2020
000877866 3367_ $$2DRIVER$$aarticle
000877866 3367_ $$2DataCite$$aOutput Types/Journal article
000877866 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615278459_28361
000877866 3367_ $$2BibTeX$$aARTICLE
000877866 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877866 3367_ $$00$$2EndNote$$aJournal Article
000877866 500__ $$aSpecial Issue: Special section: Honoring the Legacy of Dr. Eric “Lou” Vance
000877866 520__ $$aThe compressive creep of a SiC whisker (SiCw) reinforced Ti3SiC2 MAX phase‐based ceramic matrix composites (CMCs) was studied in the temperature range 1100‐1300°C in air for a stress range 20‐120 MPa. Ti3SiC2 containing 0, 10, and 20 vol% of SiCw was sintered by spark plasma sintering (SPS) for subsequent creep tests. The creep rate of Ti3SiC2 decreased by around two orders of magnitude with every additional 10 vol% of SiCw. The main creep mechanisms of monolithic Ti3SiC2 and the 10% CMCs appeared to be the same, whereas for the 20% material, a different mechanism is indicated by changes in stress exponents. The creep rates of 20% composites tend to converge to that of 10% at higher stress. Viscoplastic and viscoelastic creep is believed to be the deformation mechanism for the CMCs, whereas monolithic Ti3SiC2 might have undergone only dislocation‐based deformation. The rate controlling creep is believed to be dislocation based for all the materials which is also supported by similar activation energies in the range 650‐700 kJ/mol.
000877866 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000877866 588__ $$aDataset connected to CrossRef
000877866 7001_ $$0P:(DE-Juel1)129755$$aMalzbender, Jürgen$$b1$$ufzj
000877866 7001_ $$0P:(DE-HGF)0$$aDash, Khushbu$$b2
000877866 7001_ $$0P:(DE-Juel1)162160$$aRasinski, Marcin$$b3$$ufzj
000877866 7001_ $$0P:(DE-Juel1)129630$$aVaßen, Robert$$b4
000877866 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b5$$ufzj
000877866 7001_ $$0P:(DE-Juel1)162271$$aGonzalez‐Julian, Jesus$$b6
000877866 773__ $$0PERI:(DE-600)2008170-4$$a10.1111/jace.17323$$gp. jace.17323$$n10$$p5952-5965$$tJournal of the American Ceramic Society$$v103$$x1551-2916$$y2020
000877866 8564_ $$uhttps://juser.fz-juelich.de/record/877866/files/jace.17323.pdf$$yOpenAccess
000877866 8767_ $$92020-06-19$$d2020-07-06$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$pJACERS-45781.R2
000877866 909CO $$ooai:juser.fz-juelich.de:877866$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000877866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171462$$aForschungszentrum Jülich$$b0$$kFZJ
000877866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129755$$aForschungszentrum Jülich$$b1$$kFZJ
000877866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b3$$kFZJ
000877866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129630$$aForschungszentrum Jülich$$b4$$kFZJ
000877866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b5$$kFZJ
000877866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b6$$kFZJ
000877866 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877866 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877866 9141_ $$y2020
000877866 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000877866 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000877866 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-26
000877866 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877866 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-26
000877866 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CERAM SOC : 2018$$d2020-02-26
000877866 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000877866 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000877866 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26
000877866 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000877866 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26
000877866 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877866 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-26
000877866 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26
000877866 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000877866 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-02-26$$wger
000877866 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000877866 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000877866 9801_ $$aAPC
000877866 9801_ $$aFullTexts
000877866 980__ $$ajournal
000877866 980__ $$aVDB
000877866 980__ $$aUNRESTRICTED
000877866 980__ $$aI:(DE-Juel1)IEK-1-20101013
000877866 980__ $$aAPC
000877866 981__ $$aI:(DE-Juel1)IMD-2-20101013