000877982 001__ 877982
000877982 005__ 20220930130245.0
000877982 0247_ $$2doi$$a10.1016/j.neuroscience.2020.06.006
000877982 0247_ $$2ISSN$$a0306-4522
000877982 0247_ $$2ISSN$$a1873-7544
000877982 0247_ $$2Handle$$a2128/27326
000877982 0247_ $$2pmid$$a32540364
000877982 0247_ $$2WOS$$aWOS:000617031000012
000877982 037__ $$aFZJ-2020-02556
000877982 082__ $$a610
000877982 1001_ $$0P:(DE-Juel1)169634$$aYang, Danqing$$b0$$ufzj
000877982 245__ $$aCholinergic and Adenosinergic Modulation of Synaptic Release
000877982 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000877982 3367_ $$2DRIVER$$aarticle
000877982 3367_ $$2DataCite$$aOutput Types/Journal article
000877982 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615280199_9838
000877982 3367_ $$2BibTeX$$aARTICLE
000877982 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877982 3367_ $$00$$2EndNote$$aJournal Article
000877982 520__ $$aIn this review we will discuss the effect of two neuromodulatory transmitters, acetylcholine (ACh) and adenosine, on the synaptic release probability and short-term synaptic plasticity. ACh and adenosine differ fundamentally in the way they are released into the extracellular space. ACh is released mostly from synaptic terminals and axonal bouton of cholinergic neurons in the basal forebrain. Its mode of action on synaptic release probability is complex because it activate both ligand-gated ion channels, so-called nicotinic ACh receptors and G-protein coupled muscarinic ACh receptors. In contrast, adenosine is released from both neurons and glia via nucleoside transporters or diffusion over the cell membrane in a non-vesicular, non-synaptic fashion; its receptors are exclusively G-protein coupled receptors. We show that ACh and adenosine effects are highly specific for an identified synaptic connection and depend mostly on the presynaptic but also on the postsynaptic receptor type and discuss the functional implications of these differences.
000877982 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000877982 588__ $$aDataset connected to CrossRef
000877982 7001_ $$0P:(DE-Juel1)164184$$aDing, Chao$$b1$$ufzj
000877982 7001_ $$0P:(DE-Juel1)131702$$aQi, Guanxiao$$b2$$ufzj
000877982 7001_ $$0P:(DE-Juel1)131680$$aFeldmeyer, Dirk$$b3$$eCorresponding author$$ufzj
000877982 773__ $$0PERI:(DE-600)1498423-4$$a10.1016/j.neuroscience.2020.06.006$$gp. S0306452220303675$$p114-130$$tNeuroscience$$v456$$x0306-4522$$y2021
000877982 8564_ $$uhttps://juser.fz-juelich.de/record/877982/files/Invoice_OAD0000051067.pdf
000877982 8564_ $$uhttps://juser.fz-juelich.de/record/877982/files/1-s2.0-S0306452220303675-main.pdf$$yOpenAccess
000877982 8564_ $$uhttps://juser.fz-juelich.de/record/877982/files/Invoice_OAD0000051067.pdf?subformat=pdfa$$xpdfa
000877982 8767_ $$8OAD0000051067$$92020-06-10$$d2020-07-20$$eHybrid-OA$$jZahlung erfolgt$$zBelegnr.: 1200154908
000877982 909CO $$ooai:juser.fz-juelich.de:877982$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000877982 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169634$$aForschungszentrum Jülich$$b0$$kFZJ
000877982 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164184$$aForschungszentrum Jülich$$b1$$kFZJ
000877982 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131702$$aForschungszentrum Jülich$$b2$$kFZJ
000877982 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131680$$aForschungszentrum Jülich$$b3$$kFZJ
000877982 9130_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877982 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877982 9141_ $$y2021
000877982 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-11
000877982 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-11
000877982 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-11
000877982 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-11
000877982 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-11
000877982 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000877982 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROSCIENCE : 2018$$d2020-01-11
000877982 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-11
000877982 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-11
000877982 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-11
000877982 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-11
000877982 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877982 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-11
000877982 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-11
000877982 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-11
000877982 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-11
000877982 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-11$$wger
000877982 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-11
000877982 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x0
000877982 980__ $$ajournal
000877982 980__ $$aVDB
000877982 980__ $$aUNRESTRICTED
000877982 980__ $$aI:(DE-Juel1)INM-10-20170113
000877982 980__ $$aAPC
000877982 9801_ $$aAPC
000877982 9801_ $$aFullTexts