000877985 001__ 877985
000877985 005__ 20240711113523.0
000877985 0247_ $$2doi$$a10.1016/j.nme.2020.100752
000877985 0247_ $$2Handle$$a2128/25291
000877985 0247_ $$2WOS$$aWOS:000572929800005
000877985 037__ $$aFZJ-2020-02559
000877985 082__ $$a624
000877985 1001_ $$0P:(DE-Juel1)157772$$aHouben, Anne$$b0$$eCorresponding author
000877985 245__ $$aTungsten nitride as tritium permeation barrier
000877985 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2020
000877985 3367_ $$2DRIVER$$aarticle
000877985 3367_ $$2DataCite$$aOutput Types/Journal article
000877985 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1594901895_3303
000877985 3367_ $$2BibTeX$$aARTICLE
000877985 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877985 3367_ $$00$$2EndNote$$aJournal Article
000877985 520__ $$aThe development and application of robust tritium permeation barrier coatings is crucial for a safe and economic fusion reactor operation. Three different tungsten and tungsten nitride layers on Eurofer97 substrates were investigated by deuterium permeation measurements and compared. The microstructure and crystal structure was characterized before and after permeation measurements. The layer permeability is independent of the layer thickness and substrate of the sample. For a reliable comparison of different tritium permeation barrier coatings, the layer permeability of each layer was calculated. With this layer permeability, the permeation flux through potential fusion device components can be estimated. As examples, the permeation flux through a 0.5 cm thick steel component can be reduced by two orders of magnitude by a 2 m thick WN layer and nearly four orders of magnitude by a 2 m non-cracked tungsten layer.
000877985 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000877985 588__ $$aDataset connected to CrossRef
000877985 7001_ $$0P:(DE-Juel1)162160$$aRasiński, M.$$b1
000877985 7001_ $$0P:(DE-Juel1)184620$$aGao, Liang$$b2$$ufzj
000877985 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b3
000877985 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2020.100752$$gVol. 24, p. 100752 -$$p100752 -$$tNuclear materials and energy$$v24$$x2352-1791$$y2020
000877985 8564_ $$uhttps://juser.fz-juelich.de/record/877985/files/1-s2.0-S2352179120300284-main.pdf$$yOpenAccess
000877985 8564_ $$uhttps://juser.fz-juelich.de/record/877985/files/Postprint__ahouben_rev_non_marked.pdf$$yOpenAccess
000877985 8564_ $$uhttps://juser.fz-juelich.de/record/877985/files/Postprint__ahouben_rev_non_marked.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877985 8564_ $$uhttps://juser.fz-juelich.de/record/877985/files/1-s2.0-S2352179120300284-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877985 909CO $$ooai:juser.fz-juelich.de:877985$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877985 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157772$$aForschungszentrum Jülich$$b0$$kFZJ
000877985 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b1$$kFZJ
000877985 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184620$$aForschungszentrum Jülich$$b2$$kFZJ
000877985 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b3$$kFZJ
000877985 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000877985 9141_ $$y2020
000877985 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-14
000877985 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-14
000877985 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000877985 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-14
000877985 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-14
000877985 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-14
000877985 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-14
000877985 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-14
000877985 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877985 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-01-14
000877985 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-14
000877985 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-14
000877985 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-14
000877985 920__ $$lyes
000877985 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000877985 9801_ $$aFullTexts
000877985 980__ $$ajournal
000877985 980__ $$aVDB
000877985 980__ $$aUNRESTRICTED
000877985 980__ $$aI:(DE-Juel1)IEK-4-20101013
000877985 981__ $$aI:(DE-Juel1)IFN-1-20101013