000877985 001__ 877985 000877985 005__ 20240711113523.0 000877985 0247_ $$2doi$$a10.1016/j.nme.2020.100752 000877985 0247_ $$2Handle$$a2128/25291 000877985 0247_ $$2WOS$$aWOS:000572929800005 000877985 037__ $$aFZJ-2020-02559 000877985 082__ $$a624 000877985 1001_ $$0P:(DE-Juel1)157772$$aHouben, Anne$$b0$$eCorresponding author 000877985 245__ $$aTungsten nitride as tritium permeation barrier 000877985 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2020 000877985 3367_ $$2DRIVER$$aarticle 000877985 3367_ $$2DataCite$$aOutput Types/Journal article 000877985 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1594901895_3303 000877985 3367_ $$2BibTeX$$aARTICLE 000877985 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000877985 3367_ $$00$$2EndNote$$aJournal Article 000877985 520__ $$aThe development and application of robust tritium permeation barrier coatings is crucial for a safe and economic fusion reactor operation. Three different tungsten and tungsten nitride layers on Eurofer97 substrates were investigated by deuterium permeation measurements and compared. The microstructure and crystal structure was characterized before and after permeation measurements. The layer permeability is independent of the layer thickness and substrate of the sample. For a reliable comparison of different tritium permeation barrier coatings, the layer permeability of each layer was calculated. With this layer permeability, the permeation flux through potential fusion device components can be estimated. As examples, the permeation flux through a 0.5 cm thick steel component can be reduced by two orders of magnitude by a 2 m thick WN layer and nearly four orders of magnitude by a 2 m non-cracked tungsten layer. 000877985 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0 000877985 588__ $$aDataset connected to CrossRef 000877985 7001_ $$0P:(DE-Juel1)162160$$aRasiński, M.$$b1 000877985 7001_ $$0P:(DE-Juel1)184620$$aGao, Liang$$b2$$ufzj 000877985 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b3 000877985 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2020.100752$$gVol. 24, p. 100752 -$$p100752 -$$tNuclear materials and energy$$v24$$x2352-1791$$y2020 000877985 8564_ $$uhttps://juser.fz-juelich.de/record/877985/files/1-s2.0-S2352179120300284-main.pdf$$yOpenAccess 000877985 8564_ $$uhttps://juser.fz-juelich.de/record/877985/files/Postprint__ahouben_rev_non_marked.pdf$$yOpenAccess 000877985 8564_ $$uhttps://juser.fz-juelich.de/record/877985/files/Postprint__ahouben_rev_non_marked.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000877985 8564_ $$uhttps://juser.fz-juelich.de/record/877985/files/1-s2.0-S2352179120300284-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000877985 909CO $$ooai:juser.fz-juelich.de:877985$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000877985 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157772$$aForschungszentrum Jülich$$b0$$kFZJ 000877985 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b1$$kFZJ 000877985 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184620$$aForschungszentrum Jülich$$b2$$kFZJ 000877985 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b3$$kFZJ 000877985 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0 000877985 9141_ $$y2020 000877985 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-14 000877985 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-14 000877985 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000877985 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-14 000877985 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-14 000877985 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-14 000877985 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-14 000877985 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-14 000877985 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000877985 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-01-14 000877985 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-14 000877985 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-14 000877985 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-14 000877985 920__ $$lyes 000877985 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0 000877985 9801_ $$aFullTexts 000877985 980__ $$ajournal 000877985 980__ $$aVDB 000877985 980__ $$aUNRESTRICTED 000877985 980__ $$aI:(DE-Juel1)IEK-4-20101013 000877985 981__ $$aI:(DE-Juel1)IFN-1-20101013