000878041 001__ 878041
000878041 005__ 20240712113250.0
000878041 0247_ $$2doi$$a10.3390/cryst10080665
000878041 0247_ $$2Handle$$a2128/25451
000878041 0247_ $$2WOS$$aWOS:000564752700001
000878041 0247_ $$2altmetric$$aaltmetric:91106750
000878041 037__ $$aFZJ-2020-02597
000878041 082__ $$a540
000878041 1001_ $$0P:(DE-Juel1)142194$$aRodenbücher, Christian$$b0$$eCorresponding author
000878041 245__ $$aThe Electronic Properties of Extended Defects in SrTiO3—A Case Study of a Real Bicrystal Boundary
000878041 260__ $$aBasel$$bMDPI$$c2020
000878041 3367_ $$2DRIVER$$aarticle
000878041 3367_ $$2DataCite$$aOutput Types/Journal article
000878041 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1596713206_32110
000878041 3367_ $$2BibTeX$$aARTICLE
000878041 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878041 3367_ $$00$$2EndNote$$aJournal Article
000878041 520__ $$aThis study investigates the impact of extended defects such as dislocations on the electronic properties of SrTiO3 by using a 36.8° bicrystal as a model system. In order to evaluate the hypothesis that dislocations can serve as preferential reduction sites, which has been proposed in the literature on the basis of ab initio simulations, as well as on experiments employing local-conductivity atomic force microscopy (LC-AFM), detailed investigations of the bicrystal boundary are conducted. In addition to LC-AFM, fluorescence lifetime imaging microscopy (FLIM) is applied herein as a complementary method for mapping the local electronic properties on the microscale. Both techniques confirm that the electronic structure and electronic transport in dislocation-rich regions significantly differ from those of undistorted SrTiO3. Upon thermal reduction, a further confinement of conductivity to the bicrystal boundary region was found, indicating that extended defects can indeed be regarded as the origin of filament formation. This leads to the evolution of inhomogeneous properties of defective SrTiO3 on the nano- and microscales.
000878041 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000878041 588__ $$aDataset connected to CrossRef
000878041 7001_ $$0P:(DE-HGF)0$$aWrana, Dominik$$b1
000878041 7001_ $$0P:(DE-Juel1)131924$$aGensch, Thomas$$b2
000878041 7001_ $$0P:(DE-HGF)0$$aKrok, Franciszek$$b3
000878041 7001_ $$0P:(DE-Juel1)140525$$aKorte, Carsten$$b4
000878041 7001_ $$0P:(DE-Juel1)130993$$aSzot, K.$$b5
000878041 773__ $$0PERI:(DE-600)2661516-2$$a10.3390/cryst10080665$$gVol. 10, no. 8, p. 665 -$$n8$$p665 -$$tCrystals$$v10$$x2073-4352$$y2020
000878041 8564_ $$uhttps://juser.fz-juelich.de/record/878041/files/Invoice_MDPI_crystals-867869_747.87EUR.pdf
000878041 8564_ $$uhttps://juser.fz-juelich.de/record/878041/files/Invoice_MDPI_crystals-867869_747.87EUR.pdf?subformat=pdfa$$xpdfa
000878041 8564_ $$uhttps://juser.fz-juelich.de/record/878041/files/crystals-10-00665.pdf$$yOpenAccess
000878041 8564_ $$uhttps://juser.fz-juelich.de/record/878041/files/crystals-10-00665.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878041 8767_ $$8crystals-867869$$92020-07-17$$d2020-07-21$$eAPC$$jZahlung erfolgt$$zBeleg-Nr. 1200154962
000878041 909CO $$ooai:juser.fz-juelich.de:878041$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000878041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142194$$aForschungszentrum Jülich$$b0$$kFZJ
000878041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131924$$aForschungszentrum Jülich$$b2$$kFZJ
000878041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140525$$aForschungszentrum Jülich$$b4$$kFZJ
000878041 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)140525$$aRWTH Aachen$$b4$$kRWTH
000878041 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000878041 9141_ $$y2020
000878041 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-17
000878041 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-17
000878041 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878041 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCRYSTALS : 2018$$d2020-01-17
000878041 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-17
000878041 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-17
000878041 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-17
000878041 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-17
000878041 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-17
000878041 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-17
000878041 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878041 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-17
000878041 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-17
000878041 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-17
000878041 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-17
000878041 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-17
000878041 920__ $$lyes
000878041 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000878041 9201_ $$0I:(DE-Juel1)IBI-1-20200312$$kIBI-1$$lMolekular- und Zellphysiologie$$x1
000878041 9801_ $$aAPC
000878041 9801_ $$aFullTexts
000878041 980__ $$ajournal
000878041 980__ $$aVDB
000878041 980__ $$aUNRESTRICTED
000878041 980__ $$aI:(DE-Juel1)IEK-14-20191129
000878041 980__ $$aI:(DE-Juel1)IBI-1-20200312
000878041 980__ $$aAPC
000878041 981__ $$aI:(DE-Juel1)IET-4-20191129