000878072 001__ 878072
000878072 005__ 20240712113251.0
000878072 0247_ $$2doi$$a10.1016/j.apenergy.2021.116561
000878072 0247_ $$2ISSN$$a0306-2619
000878072 0247_ $$2ISSN$$a1872-9118
000878072 0247_ $$2Handle$$a2128/27619
000878072 0247_ $$2WOS$$aWOS:000634778500008
000878072 037__ $$aFZJ-2020-02614
000878072 082__ $$a620
000878072 1001_ $$0P:(DE-Juel1)171395$$aZou, Wei$$b0$$eCorresponding author$$ufzj
000878072 245__ $$aAn online adaptive model for the nonlinear dynamics of fuel cell voltage
000878072 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000878072 3367_ $$2DRIVER$$aarticle
000878072 3367_ $$2DataCite$$aOutput Types/Journal article
000878072 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1618410601_4027
000878072 3367_ $$2BibTeX$$aARTICLE
000878072 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878072 3367_ $$00$$2EndNote$$aJournal Article
000878072 520__ $$aPolymer electrolyte fuel cells have been widely used in automotive applications, in which fast-response and highly accurate fuel cell systems are required to achieve good performance. To fulfill this requirement, an adaptive fuel cell model is developed herein for a polymer electrolyte fuel cell system. The model is established on the basis of a least squares support vector machine. A genetic algorithm is employed to set the initial values of the internal parameters of the model by incorporating existing data from previous experiments. Then, an adaptive process is further conducted to provide an online update of the model’s internal parameters. The genetic algorithm can effectively avoid the initial parameters by falling to a local minimum. Moreover, the online updating of the parameters makes the model more adaptive to load changes in the real-time application of the fuel cell system. The proposed model is experimentally-tested on a fuel cell test rig. The results indicate that the proposed model can accurately and effectively predict fuel cell voltage. In addition, two reference models are employed to compare with the online adaptive model, by which the advantages of the genetic algorithm and parameter updating are verified. The model accuracy is improved significantly with the genetic algorithm, indicating the importance of initial parameters setting. The gradient method also benefits the model’s accuracy in online modeling and predicting, but its efficiency still depends on the initial parameters. This online adaptive model can easily address frequent load change and the long term operation of fuel cells.
000878072 536__ $$0G:(DE-HGF)POF4-123$$a123 - Chemische Energieträger (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000878072 588__ $$aDataset connected to CrossRef
000878072 7001_ $$0P:(DE-Juel1)5106$$aFroning, Dieter$$b1$$ufzj
000878072 7001_ $$0P:(DE-Juel1)171458$$aShi, Yan$$b2$$ufzj
000878072 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b3$$ufzj
000878072 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2021.116561$$gVol. 288, p. 116561 -$$p116561 -$$tApplied energy$$v288$$x0306-2619$$y2021
000878072 8564_ $$uhttps://juser.fz-juelich.de/record/878072/files/2020-02614_Invoice_OAD0000101523.pdf
000878072 8564_ $$uhttps://juser.fz-juelich.de/record/878072/files/1-s2.0-S0306261921001082-main.pdf$$yOpenAccess
000878072 8564_ $$uhttps://juser.fz-juelich.de/record/878072/files/Zou_Wei_An%20Online%20Adaptive%20Model%20for%20the%20Nonlinear%20Dynamics%20of%20Fuel%20Cell%20Voltage.pdf$$yOpenAccess
000878072 8767_ $$8OAD0000101523$$92021-02-16$$d2021-02-19$$eHybrid-OA$$jZahlung erfolgt$$zBelegnr. 1200164087
000878072 909CO $$ooai:juser.fz-juelich.de:878072$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000878072 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171395$$aForschungszentrum Jülich$$b0$$kFZJ
000878072 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5106$$aForschungszentrum Jülich$$b1$$kFZJ
000878072 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171458$$aForschungszentrum Jülich$$b2$$kFZJ
000878072 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b3$$kFZJ
000878072 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b3$$kRWTH
000878072 9130_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000878072 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000878072 9141_ $$y2021
000878072 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-12
000878072 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-12
000878072 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-12
000878072 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878072 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-12
000878072 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2018$$d2020-01-12
000878072 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-12
000878072 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-12
000878072 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-12
000878072 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878072 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-12
000878072 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2018$$d2020-01-12
000878072 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-12
000878072 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-12
000878072 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-12
000878072 920__ $$lyes
000878072 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000878072 9801_ $$aAPC
000878072 9801_ $$aFullTexts
000878072 980__ $$ajournal
000878072 980__ $$aVDB
000878072 980__ $$aUNRESTRICTED
000878072 980__ $$aI:(DE-Juel1)IEK-14-20191129
000878072 980__ $$aAPC
000878072 981__ $$aI:(DE-Juel1)IET-4-20191129