001     878072
005     20240712113251.0
024 7 _ |a 10.1016/j.apenergy.2021.116561
|2 doi
024 7 _ |a 0306-2619
|2 ISSN
024 7 _ |a 1872-9118
|2 ISSN
024 7 _ |a 2128/27619
|2 Handle
024 7 _ |a WOS:000634778500008
|2 WOS
037 _ _ |a FZJ-2020-02614
082 _ _ |a 620
100 1 _ |a Zou, Wei
|0 P:(DE-Juel1)171395
|b 0
|e Corresponding author
|u fzj
245 _ _ |a An online adaptive model for the nonlinear dynamics of fuel cell voltage
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1618410601_4027
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Polymer electrolyte fuel cells have been widely used in automotive applications, in which fast-response and highly accurate fuel cell systems are required to achieve good performance. To fulfill this requirement, an adaptive fuel cell model is developed herein for a polymer electrolyte fuel cell system. The model is established on the basis of a least squares support vector machine. A genetic algorithm is employed to set the initial values of the internal parameters of the model by incorporating existing data from previous experiments. Then, an adaptive process is further conducted to provide an online update of the model’s internal parameters. The genetic algorithm can effectively avoid the initial parameters by falling to a local minimum. Moreover, the online updating of the parameters makes the model more adaptive to load changes in the real-time application of the fuel cell system. The proposed model is experimentally-tested on a fuel cell test rig. The results indicate that the proposed model can accurately and effectively predict fuel cell voltage. In addition, two reference models are employed to compare with the online adaptive model, by which the advantages of the genetic algorithm and parameter updating are verified. The model accuracy is improved significantly with the genetic algorithm, indicating the importance of initial parameters setting. The gradient method also benefits the model’s accuracy in online modeling and predicting, but its efficiency still depends on the initial parameters. This online adaptive model can easily address frequent load change and the long term operation of fuel cells.
536 _ _ |a 123 - Chemische Energieträger (POF4-123)
|0 G:(DE-HGF)POF4-123
|c POF4-123
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Froning, Dieter
|0 P:(DE-Juel1)5106
|b 1
|u fzj
700 1 _ |a Shi, Yan
|0 P:(DE-Juel1)171458
|b 2
|u fzj
700 1 _ |a Lehnert, Werner
|0 P:(DE-Juel1)129883
|b 3
|u fzj
773 _ _ |a 10.1016/j.apenergy.2021.116561
|g Vol. 288, p. 116561 -
|0 PERI:(DE-600)2000772-3
|p 116561 -
|t Applied energy
|v 288
|y 2021
|x 0306-2619
856 4 _ |u https://juser.fz-juelich.de/record/878072/files/2020-02614_Invoice_OAD0000101523.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/878072/files/1-s2.0-S0306261921001082-main.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/878072/files/Zou_Wei_An%20Online%20Adaptive%20Model%20for%20the%20Nonlinear%20Dynamics%20of%20Fuel%20Cell%20Voltage.pdf
909 C O |o oai:juser.fz-juelich.de:878072
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171395
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)5106
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171458
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129883
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)129883
913 0 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Fuel Cells
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL ENERG : 2018
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b APPL ENERG : 2018
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21