000878242 001__ 878242
000878242 005__ 20230505130534.0
000878242 0247_ $$2doi$$a10.1063/1.5102075
000878242 0247_ $$2Handle$$a2128/25437
000878242 0247_ $$2altmetric$$aaltmetric:59525405
000878242 0247_ $$2WOS$$aWOS:000483883800009
000878242 037__ $$aFZJ-2020-02711
000878242 041__ $$aEnglish
000878242 082__ $$a600
000878242 1001_ $$0P:(DE-HGF)0$$aJiang, Ting-Ting$$b0
000878242 245__ $$aProgressive amorphization of GeSbTe phase-change material under electron beam irradiation
000878242 260__ $$aMelville, NY$$bAIP Publ.$$c2019
000878242 3367_ $$2DRIVER$$aarticle
000878242 3367_ $$2DataCite$$aOutput Types/Journal article
000878242 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1596547346_5108
000878242 3367_ $$2BibTeX$$aARTICLE
000878242 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878242 3367_ $$00$$2EndNote$$aJournal Article
000878242 520__ $$aFast and reversible phase transitions in chalcogenide phase-change materials (PCMs), in particular, Ge-Sb-Te compounds, are not only of fundamental interests but also make PCMs based random access memory a leading candidate for nonvolatile memory and neuromorphic computing devices. To RESET the memory cell, crystalline Ge-Sb-Te has to undergo phase transitions first to a liquid state and then to an amorphous state, corresponding to an abrupt change in electrical resistance. In this work, we demonstrate a progressive amorphization process in GeSb2Te4 thin films under electron beam irradiation on a transmission electron microscope (TEM). Melting is shown to be completely absent by the in situ TEM experiments. The progressive amorphization process resembles closely the cumulative crystallization process that accompanies a continuous change in electrical resistance. Our work suggests that if displacement forces can be implemented properly, it should be possible to emulate symmetric neuronal dynamics by using PCMs.
000878242 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878242 536__ $$0G:(GEPRIS)167917811$$aDFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)$$c167917811$$x1
000878242 588__ $$aDataset connected to CrossRef
000878242 7001_ $$00000-0001-7327-8159$$aWang, Jiang-Jing$$b1$$eCorresponding author
000878242 7001_ $$0P:(DE-Juel1)161232$$aLu, Lu$$b2
000878242 7001_ $$0P:(DE-HGF)0$$aMa, Chuan-Sheng$$b3
000878242 7001_ $$0P:(DE-HGF)0$$aZhang, Dan-Li$$b4
000878242 7001_ $$00000-0002-6922-5393$$aRao, Feng$$b5
000878242 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b6$$ufzj
000878242 7001_ $$00000-0002-0720-4781$$aZhang, Wei$$b7
000878242 773__ $$0PERI:(DE-600)2722985-3$$a10.1063/1.5102075$$gVol. 7, no. 8, p. 081121 -$$n8$$p081121 -$$tAPL materials$$v7$$x2166-532X$$y2019
000878242 8564_ $$uhttps://juser.fz-juelich.de/record/878242/files/1.5102075.pdf$$yOpenAccess
000878242 8564_ $$uhttps://juser.fz-juelich.de/record/878242/files/1.5102075.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878242 909CO $$ooai:juser.fz-juelich.de:878242$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878242 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b6$$kFZJ
000878242 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878242 9141_ $$y2020
000878242 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000878242 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000878242 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-16
000878242 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878242 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPL MATER : 2018$$d2020-01-16
000878242 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-16
000878242 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-16
000878242 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000878242 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-16
000878242 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000878242 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-16
000878242 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878242 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-01-16
000878242 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-16
000878242 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-16
000878242 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000878242 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000878242 920__ $$lyes
000878242 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878242 980__ $$ajournal
000878242 980__ $$aVDB
000878242 980__ $$aUNRESTRICTED
000878242 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878242 9801_ $$aFullTexts