000878243 001__ 878243 000878243 005__ 20230505130534.0 000878243 0247_ $$2doi$$a10.1002/pssr.201900320 000878243 0247_ $$2ISSN$$a1862-6254 000878243 0247_ $$2ISSN$$a1862-6270 000878243 0247_ $$2WOS$$aWOS:000504860900019 000878243 037__ $$aFZJ-2020-02712 000878243 041__ $$aEnglish 000878243 082__ $$a530 000878243 1001_ $$0P:(DE-HGF)0$$aWang, Jiang-Jing$$b0 000878243 245__ $$aLayer‐Switching Mechanisms in Sb 2 Te 3 000878243 260__ $$aWeinheim$$bWiley-VCH$$c2019 000878243 3367_ $$2DRIVER$$aarticle 000878243 3367_ $$2DataCite$$aOutput Types/Journal article 000878243 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1596702135_32467 000878243 3367_ $$2BibTeX$$aARTICLE 000878243 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000878243 3367_ $$00$$2EndNote$$aJournal Article 000878243 520__ $$aInterfacial phase‐change memory (iPCM) based on layer‐structured Ge‐Sb‐Te crystals has been recently proposed, offering an energy‐efficient implementation of nonvolatile memory cells and supplementing the development of Ge‐Sb‐Te‐based phase‐change random access memories (PRAMs). Although the working principle of iPCM is still under debate, it is believed that layer‐switching plays a role in the switching process between the low‐resistance and high‐resistance states of iPCM memory cells. However, the role of Ge in forming swapped bilayers—the key elements for layer‐switching—is not yet clarified. This work manages to achieve layer‐switching in Sb2Te3 thin films by manipulating the formation of bilayer defects using magnetron sputtering and post‐thermal annealing. By combining scanning transmission electron microscopy (STEM) experiments with density functional theory (DFT) calculations, the essential role of Sb‐Te intermixing is elucidated in stabilizing swapped bilayers at a low energy cost. In situ STEM experiments provide a real‐time and real‐space view of dynamical reconfiguration of van der Waals‐like gaps in Sb2Te3 thin films under electron‐beam irradiation. The results show that the Ge atoms are not necessary for the formation and motion of swapped bilayers, providing atomic insights on the layer‐switching mechanism in layer‐structured binary and ternary group V‐ and IV–V‐tellurides for memory applications. 000878243 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0 000878243 536__ $$0G:(GEPRIS)167917811$$aDFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)$$c167917811$$x1 000878243 588__ $$aDataset connected to CrossRef 000878243 7001_ $$0P:(DE-Juel1)168392$$aWang, Jun$$b1 000878243 7001_ $$0P:(DE-HGF)0$$aXu, Yazhi$$b2 000878243 7001_ $$0P:(DE-HGF)0$$aXin, Tianjiao$$b3 000878243 7001_ $$0P:(DE-HGF)0$$aSong, Zhitang$$b4 000878243 7001_ $$0P:(DE-Juel1)165656$$aPohlmann, Marc$$b5 000878243 7001_ $$0P:(DE-Juel1)164478$$aKaminski, Marvin$$b6$$ufzj 000878243 7001_ $$0P:(DE-Juel1)161232$$aLu, Lu$$b7 000878243 7001_ $$0P:(DE-Juel1)145710$$aDu, Hongchu$$b8$$ufzj 000878243 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b9$$ufzj 000878243 7001_ $$0P:(DE-HGF)0$$aMazzarello, Riccardo$$b10 000878243 7001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b11$$ufzj 000878243 7001_ $$00000-0002-0720-4781$$aZhang, Wei$$b12$$eCorresponding author 000878243 773__ $$0PERI:(DE-600)2259465-6$$a10.1002/pssr.201900320$$gVol. 13, no. 10, p. 1900320 -$$n10$$p1900320 -$$tPhysica status solidi / Rapid research letters Rapid research letters$$v13$$x1862-6270$$y2019 000878243 8564_ $$uhttps://juser.fz-juelich.de/record/878243/files/pssr.201900320.pdf$$yRestricted 000878243 8564_ $$uhttps://juser.fz-juelich.de/record/878243/files/pssr.201900320.pdf?subformat=pdfa$$xpdfa$$yRestricted 000878243 909CO $$ooai:juser.fz-juelich.de:878243$$pVDB 000878243 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164478$$aForschungszentrum Jülich$$b6$$kFZJ 000878243 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145710$$aForschungszentrum Jülich$$b8$$kFZJ 000878243 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b9$$kFZJ 000878243 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b11$$kFZJ 000878243 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0 000878243 9141_ $$y2020 000878243 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-27$$wger 000878243 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS STATUS SOLIDI-R : 2018$$d2020-02-27 000878243 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27 000878243 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27 000878243 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-27 000878243 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-27 000878243 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27 000878243 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-27 000878243 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27 000878243 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27 000878243 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27 000878243 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-27 000878243 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-27 000878243 920__ $$lyes 000878243 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0 000878243 980__ $$ajournal 000878243 980__ $$aVDB 000878243 980__ $$aI:(DE-Juel1)ER-C-1-20170209 000878243 980__ $$aUNRESTRICTED