Journal Article FZJ-2020-02712

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Layer‐Switching Mechanisms in Sb 2 Te 3

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2019
Wiley-VCH Weinheim

Physica status solidi / Rapid research letters Rapid research letters 13(10), 1900320 - () [10.1002/pssr.201900320]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Interfacial phase‐change memory (iPCM) based on layer‐structured Ge‐Sb‐Te crystals has been recently proposed, offering an energy‐efficient implementation of nonvolatile memory cells and supplementing the development of Ge‐Sb‐Te‐based phase‐change random access memories (PRAMs). Although the working principle of iPCM is still under debate, it is believed that layer‐switching plays a role in the switching process between the low‐resistance and high‐resistance states of iPCM memory cells. However, the role of Ge in forming swapped bilayers—the key elements for layer‐switching—is not yet clarified. This work manages to achieve layer‐switching in Sb2Te3 thin films by manipulating the formation of bilayer defects using magnetron sputtering and post‐thermal annealing. By combining scanning transmission electron microscopy (STEM) experiments with density functional theory (DFT) calculations, the essential role of Sb‐Te intermixing is elucidated in stabilizing swapped bilayers at a low energy cost. In situ STEM experiments provide a real‐time and real‐space view of dynamical reconfiguration of van der Waals‐like gaps in Sb2Te3 thin films under electron‐beam irradiation. The results show that the Ge atoms are not necessary for the formation and motion of swapped bilayers, providing atomic insights on the layer‐switching mechanism in layer‐structured binary and ternary group V‐ and IV–V‐tellurides for memory applications.

Classification:

Contributing Institute(s):
  1. Physik Nanoskaliger Systeme (ER-C-1)
Research Program(s):
  1. 143 - Controlling Configuration-Based Phenomena (POF3-143) (POF3-143)
  2. DFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811) (167917811)

Appears in the scientific report 2020
Database coverage:
Medline ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-1
Workflow collections > Public records
Publications database

 Record created 2020-08-04, last modified 2023-05-05


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)