001     878243
005     20230505130534.0
024 7 _ |a 10.1002/pssr.201900320
|2 doi
024 7 _ |a 1862-6254
|2 ISSN
024 7 _ |a 1862-6270
|2 ISSN
024 7 _ |a WOS:000504860900019
|2 WOS
037 _ _ |a FZJ-2020-02712
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Wang, Jiang-Jing
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Layer‐Switching Mechanisms in Sb 2 Te 3
260 _ _ |a Weinheim
|c 2019
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1596702135_32467
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Interfacial phase‐change memory (iPCM) based on layer‐structured Ge‐Sb‐Te crystals has been recently proposed, offering an energy‐efficient implementation of nonvolatile memory cells and supplementing the development of Ge‐Sb‐Te‐based phase‐change random access memories (PRAMs). Although the working principle of iPCM is still under debate, it is believed that layer‐switching plays a role in the switching process between the low‐resistance and high‐resistance states of iPCM memory cells. However, the role of Ge in forming swapped bilayers—the key elements for layer‐switching—is not yet clarified. This work manages to achieve layer‐switching in Sb2Te3 thin films by manipulating the formation of bilayer defects using magnetron sputtering and post‐thermal annealing. By combining scanning transmission electron microscopy (STEM) experiments with density functional theory (DFT) calculations, the essential role of Sb‐Te intermixing is elucidated in stabilizing swapped bilayers at a low energy cost. In situ STEM experiments provide a real‐time and real‐space view of dynamical reconfiguration of van der Waals‐like gaps in Sb2Te3 thin films under electron‐beam irradiation. The results show that the Ge atoms are not necessary for the formation and motion of swapped bilayers, providing atomic insights on the layer‐switching mechanism in layer‐structured binary and ternary group V‐ and IV–V‐tellurides for memory applications.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|x 0
|f POF III
536 _ _ |a DFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)
|0 G:(GEPRIS)167917811
|c 167917811
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wang, Jun
|0 P:(DE-Juel1)168392
|b 1
700 1 _ |a Xu, Yazhi
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Xin, Tianjiao
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Song, Zhitang
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Pohlmann, Marc
|0 P:(DE-Juel1)165656
|b 5
700 1 _ |a Kaminski, Marvin
|0 P:(DE-Juel1)164478
|b 6
|u fzj
700 1 _ |a Lu, Lu
|0 P:(DE-Juel1)161232
|b 7
700 1 _ |a Du, Hongchu
|0 P:(DE-Juel1)145710
|b 8
|u fzj
700 1 _ |a Jia, Chun-Lin
|0 P:(DE-Juel1)130736
|b 9
|u fzj
700 1 _ |a Mazzarello, Riccardo
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Wuttig, Matthias
|0 P:(DE-Juel1)176716
|b 11
|u fzj
700 1 _ |a Zhang, Wei
|0 0000-0002-0720-4781
|b 12
|e Corresponding author
773 _ _ |a 10.1002/pssr.201900320
|g Vol. 13, no. 10, p. 1900320 -
|0 PERI:(DE-600)2259465-6
|n 10
|p 1900320 -
|t Physica status solidi / Rapid research letters Rapid research letters
|v 13
|y 2019
|x 1862-6270
856 4 _ |u https://juser.fz-juelich.de/record/878243/files/pssr.201900320.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/878243/files/pssr.201900320.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:878243
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)164478
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)145710
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130736
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)176716
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-02-27
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS STATUS SOLIDI-R : 2018
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-02-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-02-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21