000878253 001__ 878253 000878253 005__ 20210130005513.0 000878253 0247_ $$2doi$$a10.1111/jace.17270 000878253 0247_ $$2ISSN$$a0002-7820 000878253 0247_ $$2ISSN$$a1551-2916 000878253 0247_ $$2Handle$$a2128/25446 000878253 0247_ $$2WOS$$aWOS:000544970700001 000878253 037__ $$aFZJ-2020-02722 000878253 041__ $$aEnglish 000878253 082__ $$a660 000878253 1001_ $$0P:(DE-HGF)0$$aLiu, Jia$$b0 000878253 245__ $$aCharge effects in donor‐doped perovskite ferroelectrics 000878253 260__ $$aWesterville, Ohio$$bSoc.$$c2020 000878253 3367_ $$2DRIVER$$aarticle 000878253 3367_ $$2DataCite$$aOutput Types/Journal article 000878253 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1596700173_32467 000878253 3367_ $$2BibTeX$$aARTICLE 000878253 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000878253 3367_ $$00$$2EndNote$$aJournal Article 000878253 520__ $$aDoping is a widely used method to tune the physical properties of ferroelectric perovskites. Since doping can induce effective charges, it is important to understand how charges affect the chemical and physical properties of the doped perovskites. Here, we propose two charge compensation models, by adding the charge‐dipole interaction to the effective Hamiltonian, which has not been done previously, and numerically investigate how lanthanum doping affects the ferroelectric phase transition temperature and the hysteresis loop in BaTiO3. The consequences of the charge compensation models are compared and discussed, revealing that the electron compensation mechanism with some Ti4+ ions changing to Ti3+ is critical to understanding the donor‐doped perovskites. 000878253 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0 000878253 588__ $$aDataset connected to CrossRef 000878253 7001_ $$00000-0002-6889-2506$$aLiu, Laijun$$b1 000878253 7001_ $$0P:(DE-HGF)0$$aZhang, Jiale$$b2 000878253 7001_ $$00000-0002-0815-4587$$aJin, Li$$b3 000878253 7001_ $$00000-0002-5121-9841$$aWang, Dawei$$b4$$eCorresponding author 000878253 7001_ $$0P:(DE-HGF)0$$aWei, Jie$$b5 000878253 7001_ $$00000-0003-2378-7304$$aYe, Zuo‐Guang$$b6 000878253 7001_ $$0P:(DE-HGF)0$$aJia, Chun‐Lin$$b7 000878253 773__ $$0PERI:(DE-600)2008170-4$$a10.1111/jace.17270$$gVol. 103, no. 9, p. 5392 - 5399$$n9$$p5392 - 5399$$tJournal of the American Ceramic Society$$v103$$x1551-2916$$y2020 000878253 8564_ $$uhttps://juser.fz-juelich.de/record/878253/files/jace.17270.pdf 000878253 8564_ $$uhttps://juser.fz-juelich.de/record/878253/files/1909.10998.pdf$$yPublished on 2020-05-25. Available in OpenAccess from 2021-05-25. 000878253 8564_ $$uhttps://juser.fz-juelich.de/record/878253/files/jace.17270.pdf?subformat=pdfa$$xpdfa 000878253 8564_ $$uhttps://juser.fz-juelich.de/record/878253/files/1909.10998.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-05-25. Available in OpenAccess from 2021-05-25. 000878253 909CO $$ooai:juser.fz-juelich.de:878253$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000878253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b7$$kFZJ 000878253 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0 000878253 9141_ $$y2020 000878253 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26 000878253 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26 000878253 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-26 000878253 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-26 000878253 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000878253 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CERAM SOC : 2018$$d2020-02-26 000878253 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger 000878253 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26 000878253 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26 000878253 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26 000878253 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26 000878253 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-26 000878253 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26 000878253 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26 000878253 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-02-26$$wger 000878253 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26 000878253 920__ $$lyes 000878253 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0 000878253 980__ $$ajournal 000878253 980__ $$aVDB 000878253 980__ $$aUNRESTRICTED 000878253 980__ $$aI:(DE-Juel1)ER-C-1-20170209 000878253 9801_ $$aFullTexts