Journal Article FZJ-2020-02722

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Charge effects in donor‐doped perovskite ferroelectrics

 ;  ;  ;  ;  ;  ;  ;

2020
Soc. Westerville, Ohio

Journal of the American Ceramic Society 103(9), 5392 - 5399 () [10.1111/jace.17270]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Doping is a widely used method to tune the physical properties of ferroelectric perovskites. Since doping can induce effective charges, it is important to understand how charges affect the chemical and physical properties of the doped perovskites. Here, we propose two charge compensation models, by adding the charge‐dipole interaction to the effective Hamiltonian, which has not been done previously, and numerically investigate how lanthanum doping affects the ferroelectric phase transition temperature and the hysteresis loop in BaTiO3. The consequences of the charge compensation models are compared and discussed, revealing that the electron compensation mechanism with some Ti4+ ions changing to Ti3+ is critical to understanding the donor‐doped perovskites.

Classification:

Contributing Institute(s):
  1. Physik Nanoskaliger Systeme (ER-C-1)
Research Program(s):
  1. 143 - Controlling Configuration-Based Phenomena (POF3-143) (POF3-143)

Appears in the scientific report 2020
Database coverage:
Medline ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2020-08-04, last modified 2021-01-30


Published on 2020-05-25. Available in OpenAccess from 2021-05-25.:
Download fulltext PDF Download fulltext PDF (PDFA)
(additional files)
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)