001 | 878253 | ||
005 | 20210130005513.0 | ||
024 | 7 | _ | |a 10.1111/jace.17270 |2 doi |
024 | 7 | _ | |a 0002-7820 |2 ISSN |
024 | 7 | _ | |a 1551-2916 |2 ISSN |
024 | 7 | _ | |a 2128/25446 |2 Handle |
024 | 7 | _ | |a WOS:000544970700001 |2 WOS |
037 | _ | _ | |a FZJ-2020-02722 |
041 | _ | _ | |a English |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Liu, Jia |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Charge effects in donor‐doped perovskite ferroelectrics |
260 | _ | _ | |a Westerville, Ohio |c 2020 |b Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1596700173_32467 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Doping is a widely used method to tune the physical properties of ferroelectric perovskites. Since doping can induce effective charges, it is important to understand how charges affect the chemical and physical properties of the doped perovskites. Here, we propose two charge compensation models, by adding the charge‐dipole interaction to the effective Hamiltonian, which has not been done previously, and numerically investigate how lanthanum doping affects the ferroelectric phase transition temperature and the hysteresis loop in BaTiO3. The consequences of the charge compensation models are compared and discussed, revealing that the electron compensation mechanism with some Ti4+ ions changing to Ti3+ is critical to understanding the donor‐doped perovskites. |
536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Liu, Laijun |0 0000-0002-6889-2506 |b 1 |
700 | 1 | _ | |a Zhang, Jiale |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Jin, Li |0 0000-0002-0815-4587 |b 3 |
700 | 1 | _ | |a Wang, Dawei |0 0000-0002-5121-9841 |b 4 |e Corresponding author |
700 | 1 | _ | |a Wei, Jie |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Ye, Zuo‐Guang |0 0000-0003-2378-7304 |b 6 |
700 | 1 | _ | |a Jia, Chun‐Lin |0 P:(DE-HGF)0 |b 7 |
773 | _ | _ | |a 10.1111/jace.17270 |g Vol. 103, no. 9, p. 5392 - 5399 |0 PERI:(DE-600)2008170-4 |n 9 |p 5392 - 5399 |t Journal of the American Ceramic Society |v 103 |y 2020 |x 1551-2916 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/878253/files/jace.17270.pdf |
856 | 4 | _ | |y Published on 2020-05-25. Available in OpenAccess from 2021-05-25. |u https://juser.fz-juelich.de/record/878253/files/1909.10998.pdf |
856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/878253/files/jace.17270.pdf?subformat=pdfa |
856 | 4 | _ | |y Published on 2020-05-25. Available in OpenAccess from 2021-05-25. |x pdfa |u https://juser.fz-juelich.de/record/878253/files/1909.10998.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:878253 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |2 G:(DE-HGF)POF3-100 |v Controlling Configuration-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-02-26 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J AM CERAM SOC : 2018 |d 2020-02-26 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2020-02-26 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-02-26 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-02-26 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-02-26 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-02-26 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-02-26 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-02-26 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-02-26 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|